Imperial College London

SUSY Phenomenology & Experimental searches

Alex Tapper

Slides available at:

http://www.hep.ph.ic.ac.uk/~tapper/lecture.html

Reminder

- Supersymmetry is a theory which postulates a new symmetry between fermions and bosons
- Best studied extension to the Standard Model with vast literature
- Has the potential to solve some of the most serious problems in the Standard Model quite naturally
- Now how we search for Supersymmetry at colliders?

- What's the strategy?
- Detailed example of hadronic search
- What if we find something?
- Next steps

Reading list

- Vast literature on Supersymmetry
- Latest results from the LHC
 - -ATLAS SUSY group
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>SupersymmetryPublicResults</u>
 - -CMS SUSY group
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u>
 <u>PhysicsResultsSUS</u>
- Check any day on hep-ex to see latest papers
 - <u>http://arxiv.org/archive/hep-ex</u>

SUSY search strategy

- Be as model independent as possible
 - But the MSSM has > 100 parameters
 - Need more constrained models
 - Choose a set of benchmark points that are representative of a range of topologies and areas of phase space
 - Points usually used CMSSM at low masses, just above the (LMx)

SUSY search strategy

- Production
 - Squark and gluino expected to dominate
 - Strong production so high cross section
 - Cross section depends only on masses
 - Approx. independent of SUSY model

SUSY search strategy

- Production
 - Squark and gluino expected to dominate
 - Strong production so high cross section
 - Cross section depends only on masses
 - Approx. independent of SUSY model

- Decay
 - Details of decay chain depend on SUSY model (mass spectra, branching ratios, etc.)
 - Assume RP conserved \rightarrow decay to lightest SUSY particle (LSP)
 - Assume squarks and gluinos are heavy \rightarrow long decay chains
- Signatures
 - MET from LSPs, high- $E_{\rm T}$ jets and leptons from long decay chain
 - Focus on robust and simple signatures
 - Common to wide variety of models
- Background and detector performance define searches not models

Backgrounds

- Physics
 - Standard Model processes that give the same signatures as SUSY
 - − Rely on Monte Carlo predictions? → measure in data
- Detector effects
 - Detector noise, mis-measurements etc. that generate MET or extra jets
 - Commissioning and calibration
- Beam related
 - Beam-halo muons (and cosmic-ray muons), beam-gas events
 - Data and simulation already \rightarrow measure in situ too

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- Generic missing energy signatures
- Categorised by numbers of leptons and photons
- Many include jets → strong production

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- Very challenging due to large amount and wide range of backgrounds
- However most sensitive search for strongly produced SUSY
- CMS pursues several complementary strategies based on kinematics and detector understanding
- Extend to b, τ and top-tagged final states

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- Lepton (electron or muon) requirement reduces background considerably
- -Only ttbar and W+jets left

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- Adding a second lepton (electron or muon) reduced W background
- Several techniques including opposite-sign opposite-flavour subtraction
- -Shape information and mass edges

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- -A natural SUSY signature
- Very small Standard Model backgrounds
- Include all three generations of leptons and all cross channels

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- -Very clean events with very low Standard Model background
- Include all three generations of leptons and all combinations
- -Search inclusively, on the Z peak, with and without MET
- -Some striking Standard Model events observed

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- -Many gauge-mediated models predict photons in final state
- Di-photon searches dominated by QCD multijet and γ+jet backgrounds

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

- -Many gauge mediated models predict photons in final state
- Lepton reduces QCD multijet and γ +jet backgrounds

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

RPV	"Exotic"
R-Parity violating searches	Long-lived particles etc.

- Non-MET based searches
- R-parity conserving and "exotic" SUSY
- Examples are long-lived particles

 SUSY particles produced strongly and decay through long cascade

- Search for excess of events with large MET (from LSP) and several hadronic jets
- Veto events with leptons

- Simple (pre)selection
 - At least two jets with $E_T > 50$ GeV and $|\eta| < 3.0$
 - Veto events with an electron or muon $P_{\rm T}{>}10~\text{GeV}$
- Use energy sums based on jets
 - More robust since you can put minimum $E_{\rm T}$ cut
 - $-H_T$ scalar sum of jet E_T
 - MHT vector sum of jet $E_{\rm T}$
- Enhance SUSY-like processes

 $-\,E_{\rm T}$ of two highest $E_{\rm T}$ jets > 100 GeV $|\eta_{j1}|{<}2.0$

 Look at simulation to see what processes form backgrounds to your signal →

CMS-PAS-SUS-08-005 CMS-PAS-SUS-09-001 CMS-PAS-SUS-11-001 Phys. Lett. B698:196 (2011) arXiv:1109.2352

- QCD is by far largest background
- Z-boson decays to neutrinos
- Top-pair production and W-boson decays

Background from QCD

- QCD processes lead to di-jet events
- Gluon radiation gives >2 jets
- When perfectly measured no MET but...
 - -Not a perfect detector
 - -Semi-leptonic decays in jets (b and c quarks)

All-hadronic search

Phys. Rev. Lett. 101:221803 (2008)

• A novel approach combining angular and energy measurements

$$\alpha_{T} = \frac{E_{T j2}}{M_{T j1j2}} = \frac{\sqrt{E_{T j2} / E_{T j1}}}{\sqrt{2(1 - \cos \Delta \varphi)}}$$

- Perfectly balanced events have $a_T=0.5$
- Mis-measurement of either jet leads to lower values

All-hadronic search

- Originally proposed for di-jet events \rightarrow generalised up to six jets
- Perfectly balanced events have $a_T=0.5$ (cut at $a_T>0.55$)
- Mis-measurement of either jet leads to lower values

- Make cut on $a_T > 0.55$ QCD under control
- Look at other backgrounds \rightarrow

Z-boson background

- Data-driven background estimate
 - Find a control region in phase space where SM background dominates
 - Use measurements in this region to infer SM background in signal region
 - Example Z \rightarrow vv + jets \rightarrow irreducible background
 - Replacement technique

Z → II + jets Strength: very clean Weakness: low statistics

 $W \rightarrow lv + jets$

Strength: larger statistics Weakness: background from SM and SUSY

 γ + jets Strength: large statistics and clean at high E_T

Weakness: background at low E_T, theoretical errors

MET

Z-boson background

- Select γ + \geq 3 jets with E γ >150 GeV
 - Clean sample S/B>20
 - Remove photon from the event
 - Recalculate MET
 - Normalise with $\sigma(Z+jets)/\sigma(\gamma+jets)$ from MC or measurements

CMS-PAS-SUS-08-002

Results

$H_{\rm T}$ bin (GeV)	275-325	325-375	375-475	475-575	575-675	675–775	775-875	>875
SM hadronic	787^{+32}_{-22}	310^{+8}_{-12}	202^{+9}_{-9}	$60.4^{+4.2}_{-3.0}$	$20.3^{+1.8}_{-1.1}$	$7.7^{+0.8}_{-0.5}$	$3.2^{+0.4}_{-0.2}$	$2.8^{+0.4}_{-0.2}$
Data hadronic	782	321	196	62	21	6	3	1
SM μ + jets	367^{+15}_{-15}	182^{+8}_{-9}	113^{+8}_{-7}	$36.5^{+3.8}_{-3.3}$	$13.4^{+2.2}_{-1.8}$	$4.0^{+1.4}_{-1.2}$	$0.8^{+0.9}_{-0.1}$	$0.7^{+0.9}_{-0.1}$
Data μ + jets	389	156	113	39	17	5	0	0
SM γ + jets	834^{+28}_{-30}	325^{+17}_{-17}	210^{+12}_{-12}	$64.7^{+6.9}_{-7.0}$	$21.1^{+3.9}_{-4.3}$	$10.5^{+2.5}_{-2.6}$	$6.1^{+0.9}_{-1.7}$	$5.5^{+0.9}_{-1.6}$
Data γ + jets	849	307	210	67	24	12	4	4

Candidate event

Limit in the CMSSM

Simplified Models

Summary of limits

 $m(ilde{\chi}^0)$ is varied from 0 $GeV\!/c^2$ (dark blue) to $m(ilde{g})\!-\!200~GeV\!/c^2$ (light blue).

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Mass determination example

- Two undetected LSPs per event
 - No mass peaks
 - Constraints from edges and endpoints in kinematic distributions

- Two-body
$$(m_{ll}^{max})^2 = \frac{\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}}^2\right)\left(m_{\tilde{l}}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{t}}^2}$$

-Three-body
$$S(m_{ll}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{0}^{m_{cut}} dy \cdot y \frac{\sqrt{y^4 - y^2 (m^2 + M^2) + (mM)^2}}{(y^2 - m_Z^2)^2} \times (-2y^4 - y^2 (m^2 + 2M^2) + (mM)^2) e^{-\frac{1}{2}}$$

- Simplest example many others with endpoints, thresholds and other variables (M_{T2} and friends)
- Vast literature → recommended review Barr & Lester arXiv: 1004.2732

Mass determination example

CMS PAS-SUS-09-002

• Fit ee, µµ and eµ distributions simultaneously

- Monte Carlo study for 200 pb⁻¹ @ 10 TeV (600-700 pb⁻¹ @ 7 TeV)
- Di-leptonic end-point $m_{II,max}$ =51.3 ± 1.5 (stat.) ± 0.9 (syst.) GeV [52.7 GeV]
- Can also determine spins given enough data \rightarrow need upgraded LHC

- What constrains SUSY masses?
 - -First lecture reminder

Superpartners could be @ 10 TeV (scalars anywhere)

What constrains SUSY masses?
 –First lecture reminder

• What constrains SUSY masses?

-First lecture reminder

N. Arkani-Hamed @ Implications of LHC results for TeV-scale physics

Use parton luminosities to illustrate gain from 8 TeV to 14 TeV

Summary

- Wide range of searches underway at the LHC
- Unfortunately no signs of Supersymmetry yet
- Tools in place to measure masses and spins of any discovery
- The next few years should be very exciting!