Imperial College London



# Searches for Supersymmetry with the CMS detector at the LHC

Alex Tapper





#### Introduction

#### • SUSY search programme

- What to look for and how to look for it
- All-hadronic searches
- Searches with leptons
- Searches with photons

#### Summary and conclusions



## **The CMS detector**

#### JINST3:S08004 (2008)

- 4T solenoid magnet
- Silicon detector (pixel, strips)
- Crystal ECAL  $\sigma(E)/E=3\%/\sqrt{E+0.003}$ ,
- Brass/sci. HCAL  $\sigma(E)/E=100\%/\sqrt{E+0.05}$
- Muon chambers σ(p)/p<10% at 1TeV</li>



# The CMS detector in 2011



- CMS collected ~5.6 fb<sup>-1</sup> (93%)
  - Results based on  $\sim$ 5 fb<sup>-1</sup> (83%)

LHC delivered ~6 fb<sup>-1</sup> (thanks!)



- Average fraction of functional detector channels > 98.5%
- Lowest still > 95%



- The theory hypothesises a relationship between bosons and fermions
  - Leads to the prediction that every fermion has a bosonic super-partner and vice versa





- The theory hypothesises a relationship between bosons and fermions
  - Leads to the prediction that every fermion has a bosonic super-partner and vice versa
- Theorists love SUSY (@ TeV scale) because
  - It provides a solution to the hierarchy problem



- The theory hypothesises a relationship between bosons and fermions
  - Leads to the prediction that every fermion has a bosonic super-partner and vice versa
- Theorists love SUSY (@ TeV scale) because:
  - It provides a solution to the hierarchy problem
  - It allows unification of the gauge couplings at high scales and perhaps a GUT?



- The theory hypothesises a relationship between bosons and fermions
  - Leads to the prediction that every fermion has a bosonic super-partner and vice versa
- Theorists love SUSY (@ TeV scale) because:
  - It provides a solution to the hierarchy problem
  - It allows unification of the gauge couplings at high scales and perhaps a GUT?
  - It can provide a dark matter candidate





- The theory hypothesises a relationship between bosons and fermions
  - Leads to the prediction that every fermion has a bosonic super-partner and vice versa
- Theorists love SUSY (@ TeV scale) because:
  - It provides a solution to the hierarchy problem
  - It allows unification of the gauge couplings at high scales and perhaps a GUT?
  - It can provide a dark matter candidate
- Experimentalists love it because:
  - Plethora of new particles to discover and measure



- The theory hypothesises a relationship between bosons and fermions
  - Leads to the prediction that every fermion has a bosonic super-partner and vice versa
- Theorists love SUSY (@ TeV scale) because:
  - It provides a solution to the hierarchy problem
  - It allows unification of the gauge couplings at high scales and therefore a GUT?
  - It can provide a dark matter candidate
- Experimentalists love it because:
  - Plethora of new particles to discover and measure
- Symmetry not exact
  - SUSY and Standard Model particles have different masses
  - SUSY is broken → what does it look like and how do we search?

# SUSY search strategy



#### Production

- Squark and gluino expected to dominate\*
- Strong production so high cross section
- Cross section depends only on masses
- Approx. independent of SUSY model

\* I will cover electroweak production too  $\rightarrow$  possible with current luminosities

# SUSY search strategy



#### Production

- Squark and gluino expected to dominate
- Strong production so high cross section
- Cross section depends only on masses
- Approx. independent of SUSY model

#### Decay

- Details of decay chain depend on SUSY model (mass spectra, branching ratios, etc.)
- Assume  $R_P$  conserved  $\rightarrow$  decay to lightest SUSY particle (LSP)
- Assume squarks and gluinos are heavy → long decay chains

#### Signatures

- MET from LSPs, high-E<sub>T</sub> jets and leptons from long decay chain
- Focus on simple signatures
  - Common to wide variety of models
  - Let Standard Model background and detector performance define searches not models
- 12 CIPANP 2012, May 29 June 3, 2012, St. Petersburg, Florida, U.S.A.

# The key: backgrounds

## Physics

- Standard Model processes that give the same signatures as SUSY

### Detector effects

- Detector noise, mis-measurements etc. that generate MET or extra jets

### Other

- Beam-halo muons and cosmic-ray muons, beam-gas events
- Data and simulation already → measure in situ too



| 0-leptons  | 1-lepton                         | OSDL                                   | SSDL                                   | ≥3 leptons   | photons                    | γ+lepton                    |
|------------|----------------------------------|----------------------------------------|----------------------------------------|--------------|----------------------------|-----------------------------|
| Jets + MET | Single<br>lepton +<br>Jets + MET | Opposite-<br>sign di-<br>lepton + jets | Same-sign<br>di-lepton +<br>jets + MET | Multi-lepton | (Di-)photon<br>+ jet + MET | Photon +<br>lepton +<br>MET |
|            |                                  | + MET                                  |                                        |              |                            |                             |

- Generic missing energy signatures
- Categorised by numbers of leptons and photons
- Many include jet requirement 
   -> strong production
- Transition from simple counting experiments to shape-based analyses



| 0-leptons  | 1-lepton                         | OSDL                                            | SSDL                                   | ≥3 leptons   | photons                    | γ+lepton                    |
|------------|----------------------------------|-------------------------------------------------|----------------------------------------|--------------|----------------------------|-----------------------------|
| Jets + MET | Single<br>lepton +<br>Jets + MET | Opposite-<br>sign di-<br>lepton + jets<br>+ MET | Same-sign<br>di-lepton +<br>jets + MET | Multi-lepton | (Di-)photon<br>+ jet + MET | Photon +<br>lepton +<br>MET |

- Very challenging due to large amount and wide range of backgrounds
- However most sensitive search for strongly produced SUSY
- CMS pursues several complementary strategies based on kinematics and detector understanding
- Extended to b, T and top-tagged final states (Alfredo's talk)



| 0-leptons  | 1-lepton                         | OSDL                                            | SSDL                                   | ≥3 leptons   | photons                    | γ+lepton                    |
|------------|----------------------------------|-------------------------------------------------|----------------------------------------|--------------|----------------------------|-----------------------------|
| Jets + MET | Single<br>lepton +<br>Jets + MET | Opposite-<br>sign di-<br>lepton + jets<br>+ MET | Same-sign<br>di-lepton +<br>jets + MET | Multi-lepton | (Di-)photon<br>+ jet + MET | Photon +<br>lepton +<br>MET |

- Lepton (electron or muon) requirement reduces background considerably
- Only ttbar and W+jets left → topological information



| 0-leptons  | 1-lepton                         | OSDL                                            | SSDL                                   | ≥3 leptons   | photons                    | γ+lepton                    |
|------------|----------------------------------|-------------------------------------------------|----------------------------------------|--------------|----------------------------|-----------------------------|
| Jets + MET | Single<br>lepton +<br>Jets + MET | Opposite-<br>sign di-<br>lepton + jets<br>+ MET | Same-sign<br>di-lepton +<br>jets + MET | Multi-lepton | (Di-)photon<br>+ jet + MET | Photon +<br>lepton +<br>MET |



- Adding a second lepton (electron or muon) reduces W background
- Two analyses here: inclusive and Z peak search
- Several techniques including opposite-sign opposite-flavour subtraction
- In the case of discovery provide mass edges



| 0-leptons  | 1-lepton                         | OSDL                                            | SSDL                                   | ≥3 leptons   | photons                    | γ+lepton                    |
|------------|----------------------------------|-------------------------------------------------|----------------------------------------|--------------|----------------------------|-----------------------------|
| Jets + MET | Single<br>lepton +<br>Jets + MET | Opposite-<br>sign di-<br>lepton + jets<br>+ MET | Same-sign<br>di-lepton +<br>jets + MET | Multi-lepton | (Di-)photon<br>+ jet + MET | Photon +<br>lepton +<br>MET |



- A natural SUSY signature
- Very small Standard Model backgrounds
- Include all three generations of leptons and all cross channels



| 0-leptons  | 1-lepton                         | OSDL                                            | SSDL                                   | ≥3 leptons   | photons                    | γ+lepton                    |
|------------|----------------------------------|-------------------------------------------------|----------------------------------------|--------------|----------------------------|-----------------------------|
| Jets + MET | Single<br>lepton +<br>Jets + MET | Opposite-<br>sign di-<br>lepton + jets<br>+ MET | Same-sign<br>di-lepton +<br>jets + MET | Multi-lepton | (Di-)photon<br>+ jet + MET | Photon +<br>lepton +<br>MET |

- Very clean events with very low Standard Model background
- Include all three generations of leptons and all combinations
- Search inclusively, on the Z peak, with and without MET
- Some striking Standard Model events observed already



| 0-leptons  | 1-lepton                         | OSDL                                            | SSDL                                   | ≥3 leptons   | photons                    | γ+lepton                    |
|------------|----------------------------------|-------------------------------------------------|----------------------------------------|--------------|----------------------------|-----------------------------|
| Jets + MET | Single<br>lepton +<br>Jets + MET | Opposite-<br>sign di-<br>lepton + jets<br>+ MET | Same-sign<br>di-lepton +<br>jets + MET | Multi-lepton | (Di-)photon<br>+ jet + MET | Photon +<br>lepton +<br>MET |

- Many gauge-mediated models predict photons in final state
- Single and di-photon searches dominated by QCD multijet and γ+jet backgrounds



| 0-leptons  | 1-lepton                         | OSDL                                            | SSDL                                   | ≥3 leptons   | photons                    | γ+lepton                    |
|------------|----------------------------------|-------------------------------------------------|----------------------------------------|--------------|----------------------------|-----------------------------|
| Jets + MET | Single<br>lepton +<br>Jets + MET | Opposite-<br>sign di-<br>lepton + jets<br>+ MET | Same-sign<br>di-lepton +<br>jets + MET | Multi-lepton | (Di-)photon<br>+ jet + MET | Photon +<br>lepton +<br>MET |



- Many gauge-mediated models predict photons in final state
- Lepton reduces QCD multijet and γ+jet backgrounds



| 0-leptons  | 1-lepton                         | OSDL                                   | SSDL                                   | ≥3 leptons   | photons                    | γ+lepton                    |
|------------|----------------------------------|----------------------------------------|----------------------------------------|--------------|----------------------------|-----------------------------|
| Jets + MET | Single<br>lepton +<br>Jets + MET | Opposite-<br>sign di-<br>lepton + jets | Same-sign<br>di-lepton +<br>jets + MET | Multi-lepton | (Di-)photon<br>+ jet + MET | Photon +<br>lepton +<br>MET |

| RPV             | "Exotic"   |
|-----------------|------------|
| <b>R-Parity</b> | Long-lived |
| violating       | particles  |
| searches        | etc.       |
|                 |            |

- Non-MET based searches
- R-parity conserving and "exotic" SUSY
- Examples are long-lived particles
- Not covered in this talk but well-studied in CMS
- See <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO</u>



# Jets + MET

### • All hadronic channel, just jets and missing energy in event

- Very challenging due to large amount and wide range of backgrounds
- However most sensitive search for strongly produced SUSY





## Jets + MET

## • All background estimates taken from data

- $\bullet$  Multi-bin approach in  $H_{T}{}^{miss}$  and  $H_{T}$ 
  - Wide sensitivity
  - Bins combined for final limits



SUS-12-011

No excess seen in data → set limits



Jets + MET

SUS-12-011



• Limit in the usual CMSSM plane (tan $\beta$ =10, A<sub>0</sub>=0,  $\mu$ >0)



## **Interpretation Intermezzo**

#### Simplified Model Spectra

- Limited set of hypothetical particles and decays
- Less specific mass patterns and signatures
- Give acceptance x efficiency and cross-section limit
- Models proposed at: <u>http://www.lhcnewphysics.org</u>

### • Hadronic searches

- Squark anti-squark pair production with decay
  - squark  $\rightarrow$  quark +  $\chi^0$
- Kinematics specified by masses
- Direct case m<sub>squark</sub> vs m<sub>LSP</sub> 2D plot
- For cascade decays (arbitrary but sensible) slices of intermediate particle
- "Reference" cross sections (from PROSPINO) given to illustrate limits









- Clean way to communicate results of our searches and compare different channels → no hidden theory dependence
- Reference cross section scaled by 1/3 and 3 to demonstrate differences from spin or branching ration assumptions
- Areas of small mass splittings removed to reduce sensitivity to signal modelling



## **Dilepton searches**

## • Dilepton production:

- In cascade decays of strongly produced particles
- Directly via weak pair-production

### Several searches

- Opposite-sign leptons → On/off Z peak, same-flavour lepton pairs

### Properties

Invariant mass of lepton pair can give mass information in the case of a discovery



## Z+jets+MET

arXiv1204.3774

Reconstruct Z boson mass in e<sup>+</sup>e<sup>-</sup> or μ<sup>+</sup>μ<sup>-</sup> decay channels

## • Backgrounds

- Z + jets → mis-measured jets give false missing energy signature
- Top pair-production → leptonic decays in Z mass window

## Two complementary techniques for Z + jets

- Model instrumental mis-measurement with templates from data
- Use kinematic properties of events to estimate backgrounds

### For top background use opposite flavour subtraction

- Top decays same amount of time to  $e^{\pm}\mu^{\mp}$  as  $e^{+}e^{-}$  and  $\mu^{+}\mu^{-}$
- 29 CIPANP 2012, May 29 June 3, 2012, St. Petersburg, Florida, U.S.A.

**Z+jets+MET** 



 $JZB = |\sum jet p_T| - |p_T(Z)|$ 

Imbalance of  $p_T$  between jets and Z boson  $\rightarrow$  symmetric for background asymmetric for signal



Jet mis-measurement measured in γ +jet events and applied to signal sample to predict MET distribution

30 CIPANP 2012, May 29 - June 3, 2012, St. Petersburg, Florida, U.S.A.

arXiv1204.3774



#### • Complementary

Hadronic channel large gluino mass - leptonic channel lower mass splittings

200

400

600

800

1000

 $m_{\tilde{d}}$  (GeV)

1200

#### • In general helps to understand our coverage and spot holes



## Multileptons

arXiv:1204.5341

### • At least three high $p_T$ leptons e, $\mu$ and $\tau$ (require at least one e or $\mu$ )

- Many signal/control boxes considered:
  - MET (50 GeV)/ no MET, on/off Z peak, high H<sub>T</sub> (200 GeV)/no H<sub>T</sub>, same-sign/opposite-sign/flavour
- MET threshold determines control/signal for RPC/RPV search
- Statistically combined for final limit



- Irreducible: WZ+jets, ZZ+jets → estimated from simulation
- ttbar → simulation with study in control regions
- Z+jets, WW+jets, W+jets, QCD → data-driven fake rate





## Multileptons



#### **GGM** inspired model

- Gravitino LSP
- Mass degenerate slepton co-NLSPs
- χ<sup>0</sup> (bino-like) NNLSP

Multilepton signatures from:

$$\chi^0 
ightarrow ilde{l}^\pm l^\mp 
ightarrow l^\mp + l^\pm + ilde{G}$$

#### **RPV** interpretation in backup





## **Multileptons**







SUS-11-016

















## Photon(s) + MET



P<sub>Tγ</sub> > 80 GeV H<sub>T</sub> (≥2 Jets) > 450 GeV MET > 100 GeV



#### **Diphoton + jet + MET:**

 $P_{T\gamma} > 40/25 \text{ GeV}$ At least one jet MET > 50 GeV

SUS-12-001

- $e \rightarrow \gamma$  fake rate measured on Z peak and used to estimate EWK bkgds.



# Photon(s)+MET

|      | 2γ MET > 100 GeV | γ MET > 350 C |
|------|------------------|---------------|
| Data | 11               | 4             |
| SM   | 13.0 ± 4.3       | 8.7 ± -       |

#### GGM model (J. Ruderman, D.Shih arXiv:1103.6

- Gravitino LSP
- Neutralino NLSP
- $\chi^0$  (bino/wino-like) gives > 1 photon (BR  $\gamma$  vs  $Z^0$ )
- Limit for fixed  $\chi^0$  mass of 375 GeV



40 CIPANP 2012, May 29 - June 3, 2012, St. Petersburg, Florida, U.S.A.



SUS-12-001



# Photon(s)+MET

|      | 2γ MET > 100 GeV | γ MET > 350 |
|------|------------------|-------------|
| Data | 11               | 4           |
| SM   | 13.0 ± 4.3       | 8.7 ±       |

#### SUS-12-001

wino-like NLSP

#### GGM model (J. Ruderman, D.Shih arXiv:1103.6

- Gravitino LSP
- Neutralino NLSP
- $\chi^0$  (bino/wino-like) gives > 1 photon (BR  $\gamma$  vs  $Z^0$ )
- Limit for fixed  $\chi^0$  mass of 375 GeV



e.g

1 300 1

(21000000)



## **Results at a glance**

#### **Hadronic searches**



#### **Leptonic searches**



SUS-11-016



## • Wide range of SUSY searches performed with 5 fb<sup>-1</sup> 2011 data

- Focused on strong production → high cross section, rich phenomenology
- No significant deviation from the Standard Model
- Larger data samples
  - Exclusive production modes
  - Electroweak production χ<sup>o</sup>/χ<sup>±</sup>
  - Third generation → mixing/naturalness

## • LHC running well in 2012



https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS



## Backup



## Jets + MET results

| Selec             | tion                 | Z-    | $\rightarrow \nu \bar{\nu}$ | tī              | /W         | tī                   | /W                | Q     | CD         | Total  |             | Data |
|-------------------|----------------------|-------|-----------------------------|-----------------|------------|----------------------|-------------------|-------|------------|--------|-------------|------|
| $H_{\rm T}$ (GeV) | ∦ <sub>T</sub> (GeV) | from  | $\gamma$ +jets              | $\rightarrow e$ | , µ+X      | $\rightarrow \tau_h$ | <sub>adr</sub> +X | mu    | ltijets    | backį  | ground      |      |
| 500-800           | 200-350              | 359.2 | $\pm$ 82.2                  | 326.5           | $\pm 47.0$ | 348.5                | $\pm 40.1$        | 118.6 | $\pm 76.9$ | 1152.8 | $\pm 128.4$ | 1269 |
| 500-800           | 350-500              | 112.3 | $\pm 27.4$                  | 47.8            | ± 9.2      | 62.5                 | $\pm 8.7$         | 2.2   | $\pm 2.2$  | 224.8  | $\pm$ 30.3  | 236  |
| 500-800           | 500-600              | 17.6  | $\pm 5.6$                   | 5.0             | ± 2.2      | 8.7                  | $\pm 2.5$         | 0.0   | $\pm 0.1$  | 31.3   | $\pm 6.5$   | 22   |
| 500-800           | >600                 | 5.5   | $\pm 3.1$                   | 0.8             | $\pm 0.8$  | 2.0                  | $\pm 1.8$         | 0.0   | $\pm 0.0$  | 8.3    | $\pm 3.6$   | 6    |
| 800-1000          | 200-350              | 48.4  | $\pm 19.1$                  | 57.7            | $\pm 15.3$ | 56.3                 | $\pm 8.3$         | 34.6  | $\pm 24.0$ | 197.0  | $\pm 35.3$  | 177  |
| 800-1000          | 350-500              | 16.0  | $\pm 7.3$                   | 5.4             | ± 2.3      | 7.2                  | $\pm 2.0$         | 1.2   | $\pm 1.3$  | 29.8   | $\pm 8.0$   | 24   |
| 800-1000          | 500-600              | 7.1   | $\pm 4.5$                   | 2.4             | $\pm 1.5$  | 1.3                  | $\pm 0.6$         | 0.0   | $\pm 0.2$  | 10.8   | $\pm 4.8$   | 6    |
| 800–1000          | >600                 | 3.3   | $\pm 2.0$                   | 0.7             | $\pm 0.7$  | 1.0                  | $\pm 0.3$         | 0.0   | $\pm 0.1$  | 5.0    | $\pm 2.2$   | 5    |
| 1000-1200         | 200-350              | 10.9  | $\pm 5.5$                   | 13.7            | ± 3.8      | 21.9                 | ± 4.6             | 19.7  | $\pm 13.3$ | 66.2   | $\pm 15.5$  | 71   |
| 1000-1200         | 350-500              | 5.5   | $\pm 3.5$                   | 5.0             | $\pm 4.4$  | 2.9                  | $\pm 1.3$         | 0.4   | $\pm 0.7$  | 13.8   | $\pm 5.8$   | 12   |
| 1000-1200         | >500                 | 2.2   | ± 2.9                       | 1.6             | $\pm 1.2$  | 2.3                  | $\pm 1.0$         | 0.0   | $\pm 0.2$  | 6.1    | $\pm 3.3$   | 4    |
| 1200-1400         | 200-350              | 3.1   | ± 2.0                       | 4.2             | ± 2.1      | 6.2                  | $\pm 1.8$         | 11.7  | $\pm 8.3$  | 25.2   | ± 9.0       | 29   |
| 1200-1400         | >350                 | 2.3   | $\pm 2.3$                   | 2.3             | $\pm 1.4$  | 0.6                  | $\pm 0.8$         | 0.2   | $\pm 0.6$  | 5,4    | $\pm 2.9$   | 8    |
| >1400             | >200                 | 3.2   | $\pm 2.4$                   | 2.7             | $\pm 1.6$  | 1.1                  | $\pm 0.5$         | 12.0  | ± 9.1      | 19.0   | ± 9.6       | 16   |

## **Multilepton results**

| Selection                             |      | $N(\tau)=0$       |               | $N(\tau)=1$      | $N(\tau)=2$ |                 |  |
|---------------------------------------|------|-------------------|---------------|------------------|-------------|-----------------|--|
|                                       | obs  | expect            | ct obs expect |                  | obs         | expect          |  |
| $4\ell$ Lepton Results                |      |                   |               |                  |             |                 |  |
| $4\ell$ (DY0) $S_T$ (High)            | 0    | $0.0010\pm0.0009$ | 0             | $0.01\pm0.09$    | 0           | $0.18\pm0.07$   |  |
| $4\ell$ (DY0) $S_T$ (Mid)             | 0    | $0.004 \pm 0.002$ | 0             | $0.28\pm0.10$    | 2           | $2.5\pm1.2$     |  |
| $4\ell$ (DY0) $S_T$ (Low)             | 0    | $0.04\pm0.02$     | 0             | $2.98\pm0.48$    | 4           | $3.5 \pm 1.1$   |  |
| $4\ell$ (DY1, no Z) $S_T$ (High)      | 1    | $0.009 \pm 0.004$ | 0             | $0.10\pm0.07$    | 0           | $0.12\pm0.05$   |  |
| $4\ell$ (DY1, Z) $S_T$ (High)         | 1    | $0.09\pm0.01$     | 0             | $0.51\pm0.15$    | 0           | $0.43 \pm 0.15$ |  |
| $4\ell$ (DY1, no Z) $S_T$ (Mid)       | 0    | $0.07\pm0.02$     | 1             | $0.88\pm0.26$    | 1           | $0.94\pm0.29$   |  |
| $4\ell$ (DY1, Z) $S_T$ (Mid)          | 0    | $0.45\pm0.11$     | 5             | $4.1 \pm 1.2$    | 3           | $3.4\pm0.9$     |  |
| $4\ell$ (DY1, no Z) $S_T(\text{Low})$ | 0    | $0.09\pm0.04$     | 7             | $5.5\pm2.2$      | 19          | $13.7\pm6.4$    |  |
| $4\ell$ (DY1, Z) $S_T$ (Low)          | 2    | $0.80\pm0.34$     | 19            | $17.7\pm4.9$     | 95          | $60 \pm 31$     |  |
| $4\ell$ (DY2, no Z) $S_T$ (High)      | 0    | $0.02\pm0.01$     | _             | _                | _           | _               |  |
| $4\ell$ (DY2, Z) $S_T$ (High)         | 0    | $0.89\pm0.34$     | _             | _                | _           | <u>н</u> –      |  |
| $4\ell$ (DY2, no Z) $S_T$ (Mid)       | 0    | $0.20\pm0.09$     | _             | _                | _           | _               |  |
| $4\ell$ (DY2, Z) $S_T$ (Mid)          | 3    | $7.9\pm3.2$       | _             | _                | _           | _               |  |
| $4\ell$ (DY2, no Z) $S_T(\text{Low})$ | 1    | $2.4 \pm 1.1$     | _             | _                | _           | _               |  |
| $4\ell$ (DY2, Z) $S_T$ (Low)          | 29   | $29\pm12$         | _             | -                | _           | _               |  |
| $3\ell$ Lepton Results                |      |                   |               |                  |             |                 |  |
| $3\ell$ (DY0) $S_T$ (High)            | 2    | $1.14\pm0.43$     | 17            | $11.2 \pm 3.2$   | 20          | $22.5\pm6.1$    |  |
| $3\ell$ (DY0) $S_T$ (Mid)             | 5    | $7.4 \pm 3.0$     | 113           | $97 \pm 31$      | 157         | $181 \pm 24$    |  |
| $3\ell$ (DY0) $S_T$ (Low)             | 17   | $13.5 \pm 4.1$    | 522           | $419\pm63$       | 1631        | $2018 \pm 253$  |  |
| $3\ell$ (DY1, no Z) $S_T$ (High)      | 6    | $3.5\pm0.9$       | 10            | $13.1\pm2.3$     | _           | _               |  |
| $3\ell$ (DY1, Z) $S_T$ (High)         | 17   | $18.7\pm6.0$      | 35            | $39.2 \pm 4.8$   | _           | _               |  |
| $3\ell$ (DY1, no Z) $S_T$ (Mid)       | 32   | $25.5\pm6.6$      | 159           | $141 \pm 27$     | _           | _               |  |
| $3\ell$ (DY1, Z) $S_T$ (Mid)          | 89   | $102 \pm 31$      | 441           | $463\pm41$       | _           | _               |  |
| $3\ell$ (DY1, no Z) $S_T(\text{Low})$ | 126  | $150 \pm 36$      | 3721          | $2983 \pm 418$   | _           | _               |  |
| $3\ell$ (DY1, Z) $S_T$ (Low)          | 727  | $815\pm192$       | 17631         | $15758 \pm 2452$ | _           | _               |  |
|                                       |      |                   |               |                  |             |                 |  |
| Total $4\ell$                         | 37   | $42 \pm 13$       | 32.0          | $32.1 \pm 5.5$   | 124         | $85 \pm 32$     |  |
| Total $3\ell$                         | 1021 | $1137\pm198$      | 22649         | $19925 \pm 2489$ | 1808        | $2222\pm255$    |  |
| Total                                 | 1058 | $1179\pm198$      | 22681         | $19957 \pm 2489$ | 1932        | $2307 \pm 257$  |  |

| Selection                        | $N(\tau)=0$ |                   |       | $N(\tau)=1$      | $N(\tau)=2$ |                |
|----------------------------------|-------------|-------------------|-------|------------------|-------------|----------------|
|                                  | obs         | expect            | obs   | expect           | obs         | expect         |
| $4\ell$ Lepton Results           |             |                   |       |                  |             |                |
| $4\ell > 50, >200, \text{ no Z}$ | 0           | $0.018 \pm 0.005$ | 0     | $0.09\pm0.06$    | 0           | $0.7\pm0.7$    |
| $4\ell > 50, > 200, Z$           | 0           | $0.22\pm0.05$     | 0     | $0.27\pm0.11$    | 0           | $0.8 \pm 1.2$  |
| $4\ell$ >50,<200, no Z           | 1           | $0.20\pm0.07$     | 3     | $0.59\pm0.17$    | 1           | $1.5\pm0.6$    |
| $4\ell > 50, <200, Z$            | 1           | $0.79\pm0.21$     | 4     | $2.3\pm0.7$      | 0           | $1.1\pm0.7$    |
| $4\ell$ <50,>200, no Z           | 0           | $0.006\pm0.001$   | 0     | $0.14\pm0.08$    | 0           | $0.25\pm0.07$  |
| $4\ell < 50,>200,$ Z             | 1           | $0.83 \pm 0.33$   | 0     | $0.55\pm0.21$    | 0           | $1.14\pm0.42$  |
| $4\ell$ <50,<200, no Z           | 1           | $2.6 \pm 1.1$     | 5     | $3.9 \pm 1.2$    | 17          | $10.6\pm3.2$   |
| $4\ell < 50, <200, Z$            | 33          | $37 \pm 15$       | 20    | $17.0\pm5.2$     | 62          | $43 \pm 16$    |
| $3\ell$ Lepton Results           |             |                   |       |                  |             |                |
| $3\ell > 50,>200,$ no-OSSF       | 2           | $1.5 \pm 0.5$     | 33    | $30.4\pm9.7$     | 15          | $13.5\pm2.6$   |
| $3\ell$ >50,<200,no-OSSF         | 7           | $6.6\pm2.3$       | 159   | $143 \pm 37$     | 82          | $106\pm16$     |
| $3\ell$ <50,>200,no-OSSF         | 1           | $1.2 \pm 0.7$     | 16    | $16.9\pm4.5$     | 18          | $31.9\pm4.8$   |
| $3\ell$ <50,<200,no-OSSF         | 14          | $11.7 \pm 3.6$    | 446   | $356\pm55$       | 1006        | $1026\pm171$   |
| $3\ell$ >50,>200, no Z           | 8           | $5.0 \pm 1.3$     | 16    | $31.7\pm9.6$     | _           | _              |
| $3\ell > 50,>200,$ Z             | 20          | $18.9\pm6.4$      | 13    | $24.4\pm5.1$     | _           | _              |
| $3\ell$ >50,<200, no Z           | 30          | $27.0\pm7.6$      | 114   | $107\pm27$       | _           | _              |
| $3\ell$ <50,>200, no Z           | 11          | $4.5\pm1.5$       | 45    | $51.9\pm6.2$     | _           | _              |
| $3\ell > 50, <200, Z$            | 141         | $134 \pm 50$      | 107   | $114\pm16$       | _           | _              |
| $3\ell < 50,>200,$ Z             | 15          | $19.2\pm4.8$      | 166   | $244 \pm 24$     | _           | _              |
| $3\ell$ <50,<200, no Z           | 123         | $144 \pm 36$      | 3721  | $2907 \pm 412$   | _           | _              |
| $3\ell < 50, <200, Z$            | 657         | $764 \pm 183$     | 17857 | $15519 \pm 2421$ | _           | _              |
| Total $4\ell$                    | 37          | $42 \pm 15$       | 32.0  | $24.9\pm5.4$     | 80          | $59 \pm 16$    |
| Total $3\ell$                    | 1029        | $1138\pm193$      | 22693 | $19545\pm2457$   | 1121        | $1177 \pm 172$ |
| Total                            | 1066        | $1180 \pm 194$    | 22725 | $19570 \pm 2457$ | 1201        | $1236 \pm 173$ |









# Multilepton co-NLSP Model

- Right-handed sleptons are flavour degenerate and NLSP
- Neutralino (bino-like) NNLSP
- Chargino mass twice neutralino mass
- Higgsinos are decoupled
- SUSY production proceeds mainly through pairs of squarks and/or gluinos.
- Cascade decays of these states eventually pass sequentially through the lightest neutralino ( $\tilde{g}, \tilde{q} \rightarrow \chi^0 + X$ )
- Decays into a slepton and a lepton  $(\chi 0 \rightarrow \tilde{I}^{\pm}I^{\mp})$ .
- Each of the degenerate right-handed sleptons decays to the Goldstino component of the massless and non-interacting gravitino and a lepton ( $\tilde{I} \rightarrow \tilde{G}$  I)

# CMS

## Photon GGM Model

Gravitino LSP

## Neutralino NLSP

- Bino-like gives  $BR(\gamma) >> BR(Z) \rightarrow two photons >> \gamma + Z (\rightarrow jets, leptons)$
- Wino-like gives  $BR(Z) >> BR(\gamma) \rightarrow \gamma + Z (\rightarrow jets, leptons)$
- Wino-like NLSP also chargino co-NLSP  $\rightarrow \gamma + W (\rightarrow jets, leptons)$
- Higgsino gives  $h^0$  or Z  $\rightarrow$  BR depends on tan $\beta$  and sign( $\mu$ )





Haber & Kane Physics Report Volume 117, pages 75-265 (1985)

[from Frank Wuerthwein]



(c)  $\tilde{\chi}_{j}^{\circ}$  $Z^{\circ} \sim \tilde{\chi}_{i}^{\circ}$   $\frac{ig}{2\cos\theta_{W}} \gamma^{\mu} \left[ O_{ij}^{\prime\prime L} (1-\gamma_{5}) + O_{ij}^{\prime\prime R} (1+\gamma_{5}) \right]$ 

Couples to all neutralino and chargino mass eigenstates Couples to Higgsino neutralino mass eigenstates

- For WZ maximal Wino couplings (pure wino-like) and maximal Higgsino couplings (even split of two electroweak eigenstates)
- For ZZ maximal Higgsino couplings (even split of two electroweak eigenstates)
- Set chargino/heavy neutralino masses equal, light neutralino=0 and slepton mass in between