Imperial College London

Searches for Supersymmetry and Dark Matter at CMS

Alex Tapper

• The LHC and the CMS detector

Search strategy

Some examples of searches

- Strong production
- Weak production
- Initial state radiation searches

Summary and outlook

n

4 TeV

The Large Hadron Collider

3 Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments

4 TeV

The CMS detector

JINST3:S08004 (2008)

- 4T solenoid magnet
- Silicon detector (pixel, strips)
- Crystal ECAL $\sigma(E)/E=3\%/\sqrt{E+0.003}$
- Brass/sci. HCAL $\sigma(E)/E=100\%/\sqrt{E+0.05}$
- Muon chambers σ(p)/p<10% at 1TeV

CMS Total Integrated Luminosity, p-p

- LHC delivered ~6 fb⁻¹ in 2011
- CMS collected ~5.6 fb⁻¹ (93%)
- Results based on ~5 fb⁻¹ (83%)

More than 16 fb⁻¹ delivered in 2012 so far!

CMS in 2011:

- Average fraction of functional detector channels > 98.5%
- Lowest still > 95%
- 5 Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments

Dark Matter @ LHC

- Neutral and weakly interacting so difficult to observe
 - No signal in LHC detectors → missing transverse energy
- Direct production has small cross section and no signal in detector → difficult searches
- Production in conjunction with Standard Model particles easier option for detection
- Design searches based on MET →

Search strategy

- Strong production
 → Long cascades, jets, maybe leptons
- Weak production \rightarrow no hadronic jets (χ pair-production)
- Direct production → QED/QCD initial state radiation
- More exotic → stopped gluinos, HSCP…

Search strategy

- Strong production → Long cascades, jets, maybe leptons
- Weak production \rightarrow no hadronic jets (χ pair-production)
- Direct production → QED/QCD initial state radiation
- More exotic → stopped gluinos, HSCP... not covered here

8 Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments

The key: backgrounds

• Physics

- Standard Model processes that give the same signatures as SUSY

Detector effects

- Detector noise, mis-measurements etc. that generate MET or extra jets

Other

- Beam-halo muons and cosmic-ray muons, beam-gas events
- Data and simulation already → measure in situ too

All hadronic channel, just jets and missing energy in event

- Very challenging due to large amount and wide range of backgrounds
- However most sensitive search for strongly produced SUSY

• All background estimates taken from data

 \bullet Multi-bin approach in $H_{T}{}^{miss}$ and H_{T}

- Wide sensitivity
- Bins combined for final limits

No excess seen in data → set limits

11 Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments

arXiv:1207.1898

arXiv:1207.1898

• Limit in the usual CMSSM plane (tan β =10, A₀=0, μ >0)

Interpretation Intermezzo

Simplified Model Spectra

- Limited set of hypothetical particles and decays
- Less specific mass patterns and signatures
- Give acceptance x efficiency and cross-section limit
- Models proposed at: <u>http://www.lhcnewphysics.org</u>

• Hadronic searches

- Squark anti-squark pair production with decay
 - squark \rightarrow quark + χ^0
- Kinematics specified by masses
- Direct case m_{squark} vs m_{LSP} 2D plot
- For cascade decays (arbitrary but sensible) slices of intermediate particle (25%, 50%, 75%)
- "Reference" cross sections (from PROSPINO) given to illustrate limits

arXiv:1207.1898

- Clean way to communicate results of our searches and compare different channels → no hidden theory dependence
- Areas of small mass splittings removed to reduce sensitivity to signal modeling
- 14 Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments

arXiv:1207.1898

- ZZ channel allows comparison with leptonic analyses
- b-quark rich channel sets limits on 3rd generation SUSY decays

d_T search

$$\alpha_{T} = \frac{E_{T j2}}{M_{T j1j2}} = \frac{\sqrt{E_{T j2} / E_{T j1}}}{\sqrt{2(1 - \cos \Delta \varphi)}}$$

 α_T and H_T based search:

- α_T > 0.55
- H_T > 275 GeV
- At least two jets with $p_T > 100 \text{ GeV}$
- Lepton veto

PRL101:221803 (2008) & CMS-PAS-SUS-09-001

• Backgrounds

- Z → vv from γ+jets sample with MC translation factor
- W/top from µ(µ)+jets control sample with MC translation factor
- QCD background shape from lower α_T control sample

a_T search

• Multi-bin approach in H_T and number of b tagged jets

- Wide sensitivity to both inclusive and 3rd generation signatures
- Top-rich signal example
- Bins combined statistically for final limits

No excess seen in data → set limits

Exploit the b-tag dimension in top-rich decay topologies.

Photon(s) + MET

Single photon + jets + MET:

P_{Tγ} > 80 GeV H_T (≥2 Jets) > 450 GeV MET > 100 GeV

Diphoton + jet + MET:

 $P_{T\gamma} > 40/25 \text{ GeV}$ At least one jet MET > 50 GeV

- $e \rightarrow \gamma$ fake rate measured on Z peak and used to estimate EWK bkgds.

Photon(s)+MET

	2γ MET > 100 GeV	γ MET > 350 C
Data	11	8
SM	17.8 ± 12.4	14.

GGM model (J. Ruderman, D.Shih arXiv:1103.6

- Gravitino LSP
- Neutralino NLSP
- χ^0 (bino/wino-like) gives > 1 photon (BR γ vs Z^0)
- Limit for fixed χ^0 mass of 375 GeV

Photon(s)+MET

	2γ MET > 100 GeV	γ MET > 350 GeV
Data	11	8
SM	17.8 ± 12.4	14.6 ± 6.4

GGM model (J. Ruderman, D.Shih arXiv:1103.6

- Gravitino LSP
- Neutralino NLSP
- χ^0 (bino/wino-like) gives > 1 photon (BR γ vs Z^0)
- Limit for fixed χ^0 mass of 375 GeV

Photons+MET

• Extend diphoton search to low MET

 Predict background in high jet mult. signal region from low jet mult. sideband using S_T [cf CMS black hole searches]

$$S_T = MET + \Sigma_{\gamma}E_T + \Sigma_j p_T^j$$

S_T shape independent of object mult.

Normalisation from low S_T sideband

arXiv:1210.2052

Stealth SUSY model

(Fan, Reece, Ruderman arXiv:1105:5135)

- Stealth sector superpartners nearly mass degenerate
- Soft MET spectrum from LSP (RPC)
- More details in backup
- 22 Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments

Photons+MET

arXiv:1210.2052

- No excess over background prediction
- Set limits in model (and on cross section)
- M(squark) > 1430 GeV

- Background shape from 2-3 jet bins
- Normalise in 600<ST<700 GeV sideband</p>
- Signal region: ≥4 jets and S_T>700 GeV

- Adding leptons reduces background compared to hadronic searches
 - Allows looser cuts, particularly on hadronic quantities
 sensitivity to weakly produced new physics with lower cross sections
- Consider two, three and four lepton searches to search for electroweak production of SUSY particles
 - Dilepton (opposite-charge, same-charge, Z(→II)+V(→jj)
 - Trilepton (based on MET, based on M_{II} and M_T)
 - Four lepton
- Paper bringing previous and new results together
 arXiv:1209.6620

arXiv:1209.6620

• Backgrounds

- Same-sign: ttbar → data-driven fake rate, rare processes from simulation
- Opposite sign: Z+jets estimated from data templates, ttbar from opposite flavour events → here analysis targets Z(→II)+Z/W(→jj) 70 < M_{jj} < 100 GeV</p>

Three and four lepton searches

arXiv:1209.6620

arXiv:1204.5341

Backgrounds

- Irreducible: WZ+jets, ZZ+jets → estimated from simulation
- ttbar → simulation with study in control regions
- Z+jets, WW+jets, W+jets, QCD → data-driven fake rate

Tau enriched scenario: only right-handed sleptons participate and couple to the chargino via Higgsino component \rightarrow chargino decays exclusively to τ leptons

arXiv:1209.6620

Dilepton Z→II+V→jj complementary to trilepton search

Trade off purity for higher branching ratio

arXiv:1209.6620

Electroweak production limits

arXiv:1209.6620

Dark matter production at LHC

Dark matter production at LHC

arXiv:1204.0821

Selection

- P_{Tγ} > 145 GeV
- MET > 130 GeV
- Veto on jets (p_T > 30 GeV)

Source	Estimate
Jet Mimics Photon	11.2 ± 2.8
Beam Halo	11.1 ± 5.6
Electron Mimics Photon	3.5 ± 1.5
$W\gamma$	3.0 ± 1.0
γ +jet	0.5 ± 0.2
$\gamma\gamma$	0.6 ± 0.3
$Z(uar{ u})\gamma$	45.3 ± 6.9
Total Background	75.1 ± 9.5
Total Observed Candidates	73

Dark matter production at LHC

arXiv:1206.5663

Selection

- One or two jets with $p_T > 100$ (30) GeV
- MET > 200 GeV
- Δφ between jets < 2.4</p>

$E_{\rm T}^{\rm miss}$ (GeV/c) $ ightarrow$	≥ 250	≥ 300	≥ 350	≥ 400			
Process	Events						
$Z(\nu\bar{\nu})$ +jets	5106 ± 271	1908 ± 143	900 ± 94	433 ± 62			
W+jets	2632 ± 237	816 ± 83	312 ± 35	135 ± 17			
tŧ	69.8 ± 69.8	22.6 ± 22.6	8.5 ± 8.5	3.0 ± 3.0			
$Z(\ell \ell)$ +jets	22.3 ± 22.3	6.1 ± 6.1	2.0 ± 2.0	0.6 ± 0.6			
Single t	10.2 ± 10.2	2.7 ± 2.7	1.1 ± 1.1	0.4 ± 0.4			
QCD Multijets	2.2 ± 2.2	1.3 ± 1.3	1.3 ± 1.3	1.3 ± 1.3			
Total SM	7842 ± 367	2757 ± 167	1225 ± 101	573 ± 65			
Data	7584	2774	1142	522			
Expected upper limit non-SM	779	325	200	118			
Observed upper limit non-SM	600	368	158	95			

- Interpret searches in contact interaction model
 - Bai et al. JHEP 1012:048(2010) → more details in backup
- Independent of astrophysical experiments
- CMS results extend to lower masses
- Strong constraints on spin-dependent cross section

SUS-11-016

Many other searches at CMS...

• Wide range of MET based searches performed with 5 fb⁻¹ 2011 data

- No significant deviation from the Standard Model
- First few results with 2012 data → many more to come
- Larger data samples
 - Weak production modes
 - More exclusive channels
- 14 TeV collisions
 - Much larger reach!

• LHC running well in 2012

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Backup

Direct production of 3rd gen

Z' searches

• Electrons:

E_T > 35 GeV

• Muons:

■ P_T > 45 GeV

W' searches

- Electrons:
 - E_T > 90 GeV
- Muons:
 - p_T > 45 GeV

Jets + MET results

Selec	tion	Ζ-	$\rightarrow \nu \overline{\nu}$	tt	/W	tt	/W	Ç)CD	To	otal	Data
H_{Υ} (GeV)	∦ _T (GeV)			$\rightarrow e$, µ+X	\rightarrow 1	r _h +X	mı	ultijet	backg	ground	
500-800	200-350	359	± 81	327	± 47	349	± 40	119	± 77	1154	± 128	1269
500-800	350-500	112	± 26	48	± 9	62.5	± 8.7	2.2	± 2.2	225	± 29	236
500-800	500-600	17.6	± 4.9	5.0	± 2.2	8.7	± 2.5	0.0	± 0.1	31.3	± 5.9	22
500-800	>600	5.5	± 2.6	0.8	± 0.8	2.0	± 1.8	0.0	± 0.0	8.3	± 3.2	6
800-1000	200-350	48	± 19	58	± 15	56.3	± 8.3	35	± 24	197	± 35	177
800-1000	350-500	16.0	± 6.7	5.4	± 2.3	7.2	± 2.0	1.2	$^{+1.3}_{-1.2}$	29.8	± 7.5	24
800-1000	500-600	7.1	± 3.7	2.4	± 1.5	1.3	± 0.6	0.0	+0.2 0.0	10.8	± 4.0	6
800-1000	>600	3.3	± 1.7	0.7	± 0.7	1.0	± 0.3	0.0	+0.1 0.0	5.0	± 1.9	5
1000-1200	200-350	10.9	± 5.1	13.7	± 3.8	21.9	± 4.6	19.7	± 13.3	66	± 15	71
1000-1200	350-500	5.5	± 3.0	5.0	± 4.4	2.9	± 1.3	0.4	$^{+0.7}_{-0.4}$	13.8	± 5.5	12
1000-1200	>500	2.2	± 1.7	1.6	± 1.2	2.3	± 1.0	0.0	+0.2 0.0	6.1	± 2.3	4
1200-1400	200-350	3.1	± 1.8	4.2	± 2.1	6.2	± 1.8	11.7	± 8.3	25.2	± 8.9	29
1200-1400	>350	2.3	± 1.5	2.3	± 1.4	0.6	$^{+0.8}_{-0.6}$	0.2	+0.6 -0.2	5.4	± 2.3	8
>1400	>200	3.2	± 1.8	2.7	± 1.6	1.1	± 0.5	12.0	± 9.1	19.0	± 9.4	16

Multilepton results

Selection		$N(\tau)=0$		$N(\tau)=1$		$N(\tau)=2$
	obs	expect	obs	expect	obs	expect
4ℓ Lepton Results						
4ℓ (DY0) S_T (High)	0	0.0010 ± 0.0009	0	0.01 ± 0.09	0	0.18 ± 0.07
4ℓ (DY0) S_T (Mid)	0	0.004 ± 0.002	0	0.28 ± 0.10	2	2.5 ± 1.2
4ℓ (DY0) S_T (Low)	0	0.04 ± 0.02	0	2.98 ± 0.48	4	3.5 ± 1.1
4ℓ (DY1, no Z) S_T (High)	1	0.009 ± 0.004	0	0.10 ± 0.07	0	0.12 ± 0.05
4ℓ (DY1, Z) S_T (High)	1	0.09 ± 0.01	0	0.51 ± 0.15	0	0.43 ± 0.15
4ℓ (DY1, no Z) S_T (Mid)	0	0.07 ± 0.02	1	0.88 ± 0.26	1	0.94 ± 0.29
4ℓ (DY1, Z) S_T (Mid)	0	0.45 ± 0.11	5	4.1 ± 1.2	3	3.4 ± 0.9
4ℓ (DY1, no Z) $S_T(\text{Low})$	0	0.09 ± 0.04	7	5.5 ± 2.2	19	13.7 ± 6.4
4ℓ (DY1, Z) S_T (Low)	2	0.80 ± 0.34	19	17.7 ± 4.9	95	60 ± 31
4ℓ (DY2, no Z) S_T (High)	0	0.02 ± 0.01	_	_	_	_
4ℓ (DY2, Z) S_T (High)	0	0.89 ± 0.34	_	—	_	<u> </u>
4ℓ (DY2, no Z) S_T (Mid)	0	0.20 ± 0.09	_	—	_	_
4ℓ (DY2, Z) S_T (Mid)	3	7.9 ± 3.2	_	—	_	_
4ℓ (DY2, no Z) $S_T(\text{Low})$	1	2.4 ± 1.1	_	_	_	_
4ℓ (DY2, Z) S_T (Low)	29	29 ± 12	_	_	_	_
3ℓ Lepton Results						
3ℓ (DY0) S_T (High)	2	1.14 ± 0.43	17	11.2 ± 3.2	20	22.5 ± 6.1
3ℓ (DY0) S_T (Mid)	5	7.4 ± 3.0	113	97 ± 31	157	181 ± 24
3ℓ (DY0) S_T (Low)	17	13.5 ± 4.1	522	419 ± 63	1631	2018 ± 253
3ℓ (DY1, no Z) S_T (High)	6	3.5 ± 0.9	10	13.1 ± 2.3	_	_
3ℓ (DY1, Z) S_T (High)	17	18.7 ± 6.0	35	39.2 ± 4.8	_	_
3ℓ (DY1, no Z) S_T (Mid)	32	25.5 ± 6.6	159	141 ± 27	_	_
3ℓ (DY1, Z) S_T (Mid)	89	102 ± 31	441	463 ± 41	_	_
3ℓ (DY1, no Z) $S_T(\text{Low})$	126	150 ± 36	3721	2983 ± 418	_	_
3ℓ (DY1, Z) S_T (Low)	727	815 ± 192	17631	15758 ± 2452	_	_
Total 4ℓ	37	42 ± 13	32.0	32.1 ± 5.5	124	85 ± 32
Total 3ℓ	1021	1137 ± 198	22649	19925 ± 2489	1808	2222 ± 255
Total	1058	1179 ± 198	22681	19957 ± 2489	1932	2307 ± 257

Selection		$N(\tau)=0$		$N(\tau)=1$	$N(\tau)=2$	
	obs	expect	obs	expect	obs	expect
4ℓ Lepton Results						
$4\ell > 50, >200, \text{ no Z}$	0	0.018 ± 0.005	0	0.09 ± 0.06	0	0.7 ± 0.7
$4\ell > 50, > 200, Z$	0	0.22 ± 0.05	0	0.27 ± 0.11	0	0.8 ± 1.2
4ℓ >50,<200, no Z	1	0.20 ± 0.07	3	0.59 ± 0.17	1	1.5 ± 0.6
$4\ell > 50, <200, Z$	1	0.79 ± 0.21	4	2.3 ± 0.7	0	1.1 ± 0.7
4ℓ <50,>200, no Z	0	0.006 ± 0.001	0	0.14 ± 0.08	0	0.25 ± 0.07
$4\ell < 50,>200,$ Z	1	0.83 ± 0.33	0	0.55 ± 0.21	0	1.14 ± 0.42
4ℓ <50,<200, no Z	1	2.6 ± 1.1	5	3.9 ± 1.2	17	10.6 ± 3.2
$4\ell < 50, <200, Z$	33	37 ± 15	20	17.0 ± 5.2	62	43 ± 16
3ℓ Lepton Results						
$3\ell > 50,>200,$ no-OSSF	2	1.5 ± 0.5	33	30.4 ± 9.7	15	13.5 ± 2.6
3ℓ >50,<200,no-OSSF	7	6.6 ± 2.3	159	143 ± 37	82	106 ± 16
3ℓ <50,>200,no-OSSF	1	1.2 ± 0.7	16	16.9 ± 4.5	18	31.9 ± 4.8
3ℓ <50,<200,no-OSSF	14	11.7 ± 3.6	446	356 ± 55	1006	1026 ± 171
3ℓ >50,>200, no Z	8	5.0 ± 1.3	16	31.7 ± 9.6	_	_
$3\ell > 50,>200,$ Z	20	18.9 ± 6.4	13	24.4 ± 5.1	_	_
3ℓ >50,<200, no Z	30	27.0 ± 7.6	114	107 ± 27	_	_
3ℓ <50,>200, no Z	11	4.5 ± 1.5	45	51.9 ± 6.2	_	_
$3\ell > 50, <200, Z$	141	134 ± 50	107	114 ± 16	_	_
$3\ell < 50,>200,$ Z	15	19.2 ± 4.8	166	244 ± 24	_	_
3ℓ <50,<200, no Z	123	144 ± 36	3721	2907 ± 412	_	_
$3\ell < 50, <200, Z$	657	764 ± 183	17857	15519 ± 2421	_	_
Total 4ℓ	37	42 ± 15	32.0	24.9 ± 5.4	80	59 ± 16
Total 3ℓ	1029	1138 ± 193	22693	19545 ± 2457	1121	1177 ± 172
Total	1066	1180 ± 194	22725	19570 ± 2457	1201	1236 ± 173

Monphoton/monojet results

M_{χ} [GeV]	Vec	tor	Axial-Vector		
	σ [fb]	Λ [GeV]	σ [fb]	Λ [GeV]	
1	14.3(14.7)	572(568)	14.9(15.4)	565 (561)	
10	14.3(14.7)	571(567)	14.1(14.5)	573 (569)	
100	15.4(15.3)	558(558)	13.9(14.3)	554 (550)	
200	14.3(14.7)	549(545)	14.0(14.5)	508 (504)	
500	13.6(14.0)	442(439)	13.7(14.1)	358 (356)	
1000	14.1(14.5)	246(244)	13.9(14.3)	172(171)	

	Spin-c	dependent	Spin-in	dependent
M_{χ} (GeV/ c^2)	Λ (GeV)	$\sigma_{\chi N} ({\rm cm}^2)$	Λ (GeV)	$\sigma_{\chi N}$ (cm ²)
0.1	754	$1.03 imes 10^{-42}$	749	$2.90 imes 10^{-41}$
1	755	$2.94 imes10^{-41}$	751	$8.21 imes 10^{-40}$
10	765	$8.79 imes10^{-41}$	760	$2.47 imes10^{-39}$
100	736	$1.21 \ge 10^{-40}$	764	$2.83 imes10^{-39}$
200	677	$1.70 imes 10^{-40}$	736	$3.31 imes 10^{-39}$
300	602	$2.73 imes 10^{-40}$	690	$4.30 imes10^{-39}$
400	524	$4.74 imes 10^{-40}$	631	$6.15 imes10^{-39}$
700	341	$2.65 imes 10^{-39}$	455	$2.28 imes 10^{-38}$
1000	206	$1.98 imes 10^{-38}$	302	$1.18 imes 10^{-37}$

CMSSM limits

45 Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments

46 Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments

CMS

Photon GGM Model

Gravitino LSP

Neutralino NLSP

- Bino-like gives $BR(\gamma) >> BR(Z) \rightarrow two photons >> \gamma + Z (\rightarrow jets, leptons)$
- Wino-like gives $BR(Z) >> BR(\gamma) \rightarrow \gamma + Z (\rightarrow jets, leptons)$
- Wino-like NLSP also chargino co-NLSP $\rightarrow \gamma + W (\rightarrow jets, leptons)$
- Higgsino gives h^0 or Z \rightarrow BR depends on tan β and sign(μ)

47 Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments

Haber & Kane Physics Report Volume 117, pages 75-265 (1985)

[from Frank Wuerthwein]

(c) $\tilde{\chi}_{j}^{\circ}$ $Z^{\circ} \sim \tilde{\chi}_{i}^{\circ}$ $\frac{ig}{2\cos\theta_{W}} \gamma^{\mu} \left[O_{ij}^{\prime\prime L} (1-\gamma_{5}) + O_{ij}^{\prime\prime R} (1+\gamma_{5}) \right]$

Couples to all neutralino and chargino mass eigenstates Couples to Higgsino neutralino mass eigenstates

- For WZ maximal Wino couplings (pure wino-like) and maximal Higgsino couplings (even split of two electroweak eigenstates)
- For ZZ maximal Higgsino couplings (even split of two electroweak eigenstates)
- Set chargino/heavy neutralino masses equal, light neutralino=0 and slepton mass in between

Monophoton/monojet Model

Pair production of DM contact interaction with operators

vector → spin independent

 $\mathcal{O}_{AV} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$

 $\mathcal{O}_V = \frac{(\bar{\chi}\gamma_\mu\chi)(\bar{q}\gamma^\mu q)}{\Lambda^2}$

axial-vector \rightarrow spin dependent

Cross sections depend on mass (m_χ) and scale Λ (couplings)

$$\sigma_{SI} = 9 \frac{\mu^2}{\pi \Lambda^4} \qquad \qquad \Lambda = M/\sqrt{g_{\chi}g_{q}} \qquad \qquad \mu = \frac{m_{\chi}m_{p}}{m_{\chi} + m_{p}}$$

$$\sigma_{SD} = 0.33 \frac{\mu^2}{\pi \Lambda^4} \qquad \qquad \Lambda = M/\sqrt{g_{\chi}g_{q}} \qquad \qquad \mu = \frac{m_{\chi}m_{p}}{m_{\chi} + m_{p}}$$

M=10(40) TeV for monophoton(jet) analysis

Stealth SUSY model

- Hidden sector at weak scale, low scale SUSY breaking
- SUSY approximately conserved in hidden sector
- Hidden sector superpartners nearly mass degenerate
- Soft MET spectrum from LSP, R-parity conserved

- Squark pair-production with M(gluino) = 1500 GeV
- M(X₁) = 1/2 M(squark)
- M(S~)=100 GeV, M(S)=90 GeV
- BR(X₁→ γS~)=1

Use parton luminosities to illustrate the gain of 14 vs 8 TeV

