

Searches for Supersymmetry at CMS

Alex Tapper

Outline

Introduction to the LHC and CMS

- Why you should believe our measurements
- Search strategy
 - What to look for and how to look for it
- Detailed examples
 - Jets + MET
 - Di-photons + MET
 - Long lived stopped particles
- Plans and expectations for 2011
- Interpretation/communication of results
 - How do we tell you what we've found or not

Imperial College

The Large Hadron Collider

The Large Hadron Collider

Imperial College

London

The CMS detector

JINST3:S08004 (2008)

- 4T solenoid magnet
- Silicon detector (pixel, strips)
- Crystal ECAL $\sigma(E)/E=3\%/\sqrt{E+0.003}$,
- Brass/sci. HCAL $\sigma(E)/E=100\%/\sqrt{E+0.05}$
- Muon chambers σ(p)/p<10% at 1TeV

CMS-PAS-QCD-10-011

CMS-PAS-JME-10-004

- Measurements of jet cross sections and MET resolution
- Jets and MET in good shape already
- 6 Universität Heidelberg Seminar, 20th January 2011.

CMS-PAS-QCD-10-011

CMS-PAS-JME-10-004

- Measurements of jet cross sections and MET resolution
- Jets and MET in good shape already
- 7 Universität Heidelberg Seminar, 20th January 2011.

- Beautiful reconstruction of W and Z bosons
- Leptons and MET reconstruction performing well
- 8 Universität Heidelberg Seminar, 20th January 2011.

Phys. Lett. B695, 424(2011)

Imperial College

London

- Top-quark pair-production and $Z \rightarrow T^+T^-$
- b-tagging and T-tagging performing well already
- 9 Universität Heidelberg Seminar, 20th January 2011.

CMS

Re-discovery of the Standard Model

Imperial College

London

Production

- Squark and gluino expected to dominate
- Strong production so high cross section
- Cross section depends only on masses

Imperial College

Londor

Approx. independent of SUSY model

Production

- Squark and gluino expected to dominate
- Strong production so high cross section
- Cross section depends only on masses

Imperial College

Approx. independent of SUSY model

Decay

- Details of decay chain depend on SUSY model (mass spectra, branching ratios, etc.)
- Assume R_P conserved \rightarrow decay to lightest SUSY particle (LSP)
- Assume squarks and gluinos are heavy → long decay chains

Signatures

- MET from LSPs, high-E_T jets and leptons from long decay chain
- Focus on robust and simple signatures
 - Common to wide variety of models
 - Let Standard Model background and detector performance define searches not models
- 12 Universität Heidelberg Seminar, 20th January 2011.

Backgrounds

Physics

- Standard Model processes that give the same signatures as SUSY

Detector effects

Detector noise, mis-measurements etc. that generate MET or extra jets

Imperial College

■ Commissioning and calibration → good performance shown earlier

Beam related

- Beam-halo muons (and cosmic-ray muons), beam-gas events
- Data and simulation already → measure in situ too

0-leptons	2-photons	1-lepton	SSDL	OSDL	≥3 leptons
Jets + MET	Di-photon + jet + MET	Single lepton + Jets + MET	Same-sign di- lepton + jets + MET	Opposite-sign di-lepton + jets + MET	Multi-lepton

- Generic searches based on MET
- Categorised by numbers of leptons and photons
- Most include jet requirement

 strong production

0-leptons	2-photons	1-lepton	SSDL	OSDL	≥3 leptons
Jets + MET	Di-photon + jet + MET	Single lepton + Jets + MET	Same-sign di- lepton + jets + MET	Opposite-sign di-lepton + jets + MET	Multi-lepton

- Very challenging due to large amount and wide range of backgrounds
- However most sensitive search for strongly produced SUSY
- CMS pursues several complementary strategies
- In principle ATLAS should be better suited to this than CMS
- Extend this in the future to b-tagged final states (2010 dataset)
- Extension to T and top-tagged final states (2011 dataset)
- Will show you first result from this search

15 Universität Heidelberg Seminar, 20th January 2011.

Imperial College

ondor

0-leptons	2-photons	1-lepton	SSDL	OSDL	≥3 leptons
Jets + MET	Di-photon + jet + MET	Single lepton + Jets + MET	Same-sign di- lepton + jets + MET	Opposite-sign di-lepton + jets + MET	Multi-lepton

- Many gauge mediated models predict photons in final state
- Extend to single photon in future and single photon + lepton
- Will show you first result from this search

0-leptons	2-photons	1-lepton	SSDL	OSDL	≥3 leptons
Jets + MET	Di-photon + jet + MET	Single lepton + Jets + MET	Same-sign di- lepton + jets + MET	Opposite-sign di-lepton + jets + MET	Multi-lepton

Lepton (electron or muon) requirement reduces background considerably

■ Basically only ttbar left → topological handles

0-leptons	2-photons	1-lepton	SSDL	OSDL	≥3 leptons
Jets + MET	Di-photon + jet + MET	Single lepton + Jets + MET	Same-sign di-lepton + jets + MET	Opposite-sign di-lepton + jets + MET	Multi-lepton

- Very small Standard Model backgrounds
- Include all three generations of leptons and all cross channels

0-leptons	2-photons	1-lepton	SSDL	OSDL	≥3 leptons
Jets + MET	Di-photon + jet + MET	Single lepton + Jets + MET	Same-sign di- lepton + jets + MET	Opposite- sign di-lepton + jets + MET	Multi-lepton

- Two analyses here: inclusive and Z peak search
- Not including T final states in 2010
- Several techniques including opposite-sign opposite flavour subtraction

Imperial College

ondor

Shape information and mass edges

Imperial College

0-leptons	2-photons	1-lepton	SSDL	OSDL	≥3 leptons
Jets + MET	Di-photon + jet + MET	Single lepton + Jets + MET	Same-sign di- lepton + jets + MET	Opposite-sign di-lepton + jets + MET	Multi-lepton

- Very clean events with very low Standard Model background
- Include all three generations of leptons and all combinations
- Search inclusively, Z peak, with and without MET
- Some striking Standard Model events observed already

0-leptons	2-photons	1-lepton	SSDL	OSDL	≥3 leptons
Jets + MET	Di-photon + jet + MET	Single lepton + Jets + MET	Same-sign di- lepton + jets + MET	Opposite-sign di-lepton + jets + MET	Multi-lepton

RPV	"Exotic"
R-Parity violating searches	Long-lived particles etc.

Imperial College

l ondor

- Non- MET based searches
- R-parity conserving and "exotic" SUSY
- Examples are long lived particles
- Will show you first result from stopped gluino search

All hadronic search pre-selection

Loose sample of hadronic events

hep-ex/0176391

Imperial College

Londor

- Trigger H_T (ΣE_{Tjets}) > 150 GeV (RAW)
- H_T > 250 GeV
- Vertex consistent with pp collision
- At least 2 jets with E_T>50 GeV & |η|<3 anti-k_T (0.5)
- Leading jet |η|<2.5</p>
- E_{Tj2}>100 GeV
- Event veto for isolated electrons and muons with P_T>10 GeV
- Event veto for isolated photons P_T>25 GeV

Dominated by multi-jet QCD

Final selection

- No dependence on MET → robust for early LHC running
- Originally proposed for di-jet events → generalised up to 6 jets
- α_T>0.55
- R_{miss} = H_{Tmiss}/MET < 1.25 (effect of soft jets)</p>
- For $\Delta \phi^* < 0.5$ the $\Delta R_{ECAL} > 0.3$ (jets pointing to dead CALO cells)

Imperial College

Londor

H_T > 350 GeV (beyond previous searches)

Data and Monte Carlo yields

Selection	Data	SM	QCD multijet	$Z \rightarrow \nu \bar{\nu}$	W + jets	tī
$H_{\rm T} > 250 {\rm GeV}$	250 GeV 4.68M 5.81M		5.81M	290	2.0k	2.5k
$E_{\rm T}^{j_2} > 100 { m GeV}$	2.89M	3.40M	3.40M	160	610	830
$H_{\rm T} > 350 {\rm GeV}$	908k	1.11M	1.11M	80	280	650
$\alpha_T > 0.55$	37	$30.5 {\pm} 4.7$	$19.5{\pm}4.6$	$4.2{\pm}0.6$	$3.9{\pm}0.7$	$2.8{\pm}0.1$
$\Delta R_{ m ECAL} > 0.3 \lor \Delta \phi^* > 0.5$	32	$24.5 {\pm} 4.2$	$14.3 {\pm} 4.1$	$4.2 {\pm} 0.6$	$3.6{\pm}0.6$	$2.4{\pm}0.1$
$R_{\rm miss} < 1.25$	13	9.3±0.9	$0.03{\pm}0.02$	$4.1 {\pm} 0.6$	$3.3{\pm}0.6$	$1.8{\pm}0.1$

Data and Monte Carlo expectation in good agreement (errors are stat.)

Imperial College

londor

- QCD is PYTHIA, EWK backgrounds from MADGRAPH
- For N_{jets}=2 main backgrounds Z→ vv and W→Tv
- For N_{jets}>2 ttbar also contributes Z/W/ttbar approx. equal

Inclusive background estimate

- Use kinematics and control regions to estimate all backgrounds
 - Use lower H_T bins 250-300 GeV and 300-350 GeV to extrapolate into signal region 350 GeV
 - Adjust cuts in control regions to preserve kinematics
 - Define $R\alpha_T = N(\alpha_T > x)/N(\alpha_T < x)$
 - For QCD (mismeasurement) expect this to fall as resolution improves with increasing H_T

Imperial College

London

- For EWK (real MET) expect flat behaviour. Check with W/ttbar control sample
- Indicates final selection is QCD free
- Extrapolate for low to high H_T
- Result is 9.4^{+4.8}-4.0 (stat.) ±1.0 (syst.)

W+jets and ttbar backgrounds

Select a high P_T muon sample (same as ttbar cross section)

- Same cuts as signal region excluding muon in calculations (H_{Tmiss}>140 GeV)
- M_T>30 GeV to ensure pure W/ttbar sample - no QCD
- Use MC efficiencies and acceptances with this muon samples
 - Estimate number of semi-leptonic decays that are not vetoed due to low P_T leptons or leptons out of acceptance
 - Estimate number of hadronic T decays which end up in the signal sample
- Result is 6.1^{+2.8}-1.9 (stat.) ± 1.8 (syst.)
- Systematic (~30%) is conservative

Imperial College London

$Z \rightarrow vv background$

- Data-driven background estimates
- $Z \rightarrow vv + jets \rightarrow irreducible background$
 - Replacement technique

Z → II + jets Strength: very clean Weakness: low statistics

 $W \rightarrow lv + jets$ Strength: larger statistics Weakness: background from SM and SUSY

 γ + jets Strength: large statistics and clean at high E_T Weakness: background at low E_T, theoretical errors

$Z \rightarrow vv background$

Using γ + jets events

- Select very clean γ + jets sample
- P_{Tγ} > 100 GeV
- |η_γ| < 1.45
- ΔR(γ,jet) > 1.0
- H_{Tmiss} > 140 GeV
- Yields 7 events in data
- Use MC to scale $\gamma \rightarrow Z$
- Result is 4.4^{+2.3}-1.6 (stat.) ± 1.8 (syst.)
- Largest systematic from γ → Z theory

Cross check with W sample

- Result is 4.9^{+2.6}-1.8 (stat.) ± 1.5 (syst.)
- ttbar contamination in muon sample

28 Universität Heidelberg Seminar, 20th January 2011.

100 pb-1 @ 14 TeV COM

Observed data events

- Background summary
 - Inclusive 9.4^{+4.8}-4.0 (stat.) ±1.0 (syst.)
 - EWK 10.5^{+3.6}-2.5

• Examine events selected in data

- Meff = HT + HTmiss scale of event
- Δφ* distribution not peaked
- Events consistent with EWK background

Imperial College

Londor

Interpretation in CMSSM

- Signal acceptance uncertainty dominated by luminosity error (11%)
- Use Feldman-Cousins method to set 95% CL, using Profile-Likelihood to deal with nuisance parameters
- Upper limit on signal events is 13.4
- p value for SM only = 0.3
- Very weak dependence on tanβ
- Significant extension of excluded region over Tevatron experiments

Production mechanism	Yields for 35 pb^{-1}	$\epsilon_{\rm total}(\%)$	$\epsilon_{ m signature}(\%)$
<i>q̃ q̃</i>	$9.7{\pm}0.1$	$16.0{\pm}0.1$	$22.2{\pm}0.4$
Ĩ ĝ	$8.8{\pm}0.1$	$14.4{\pm}0.1$	$23.0 {\pm} 0.5$
ĝ ĝ	$0.71 {\pm} 0.02$	$12.0{\pm}0.4$	$22.5{\pm}2.0$

Imperial College

Londor

Search with di-photon events

• Pre-selection

CMS-PAS-SUS-10-002

Imperial College

- Trigger: single photon $P_{T\gamma} > 30 \text{ GeV}$
- Require two photons with $P_{T\gamma} > 30$ GeV and $|\eta\gamma| < 1.4$
- Shower shape ID cuts
- Veto if H/E>5%
- IsolationTRK < 0.001xET + 2 GeV</p>
- Isolation_{ECAL} < 0.006xE_T + 4.2 GeV
- Isolation_{HCAL} < 0.0025xE_T + 2.2 GeV
- Distinguish electrons and photons by track in pixel detector
- At least one jet E_T>30 GeV (cleans up beam and cosmic backgrounds)
- Define two control samples for later
 - fake-fake (ff) fail track isolation or shower shape
 - Z (ee) two electrons and Z mass window cut (90 ± 20 GeV)

Electroweak backgrounds

• Irreducible SM backgrounds Zyy and Wyy negligible

Main electroweak background

- W \rightarrow ev where e is mis-ID as a γ and also a real or fake γ in the event
- Measure mis-ID rate f_{e→γ} from the number of Z→ ee events in the ee and eγ samples
- Result is 1.4 ± 0.4%
- Apply this to eγ sample to get prediction

Londor

CMS

QCD backgrounds

- ECAL resolution much better than HCAL
- MET resolution dominated by HCAL
- Reweight ff and ee control samples to signal γγ E_T spectrum
- Normalise at low MET (<20 GeV)</p>

Wy cross check

- Proof that if a signal is was there we would have seen it
- "Discover" Standard Model Wγ events by switching to eγ sample

Imperial College

London

Interpretation in a GGM model

Observe 1 event MET >50 GeV consistent with 1.2 ± 0.8 background

Туре	Number of	stat	reweight	normalization
	Events	error	error	error
$\gamma\gamma$ events	1.0			
fake-fake QCD background est.	0.49 ± 0.40	± 0.36	± 0.06	± 0.07
$Z \rightarrow ee$ QCD background est.	1.67 ± 0.64	± 0.46	± 0.38	±0.23
background from $e\gamma$	0.04 ± 0.15	± 0.15	± 0.0	± 0.01
Total Background \geq 50 GeV (using ff)	0.53 ± 0.40			
Total Background \geq 50 GeV (using ee)	1.71 ± 0.68			

- Only three "light" particles: neutralino, gluino, and squark
- Gluino decays: Two jets and gaugino. Can be 3-body or cascade depending on m(squark)-m(gluino)
- Squark decays: If heavier then gluinos: quark + gluino gives three jets + gaugino. If lighter then gluino: quark and gaugino gives one jet + gaugino
- Each event has: Two gauginos → in our simple model neutralinos → two Photons + MET and between two and six jets from SUSY cascades

Imperial College

Interpretation in a GGM model

95% CL upper limit for simple model for neutralino mass = 150 GeV

Imperial College

Londor

- Upper limits between 0.3 and 1.1 pb depending on masses
- Factor of ~10 better than Tevatron could do with 6 fb⁻¹

Long-lived particle searches

- Long-lived particles possible in many theories
 - For example many SUSY models with stau NLSP with Gravitino LSP

- Long-lived charged particles with lifetimes of O(100-1000)s could explain the discrepancy between Li abundance and BBN
- Two complementary approaches:
 - High momentum tracks with large dE/dx E loss (high $\beta > 0.4$)
 - Stopped particles may decay any time → signal out-of-time with LHC beam

Imperial College

Stopped particle searches

PRL 106, 011801 (2011)

Londor

- Long-lived particles produced in pp collisions
- Particles stop in detector in brass absorber in barrel hadronic calorimeter
- Search for decays during non-collision times (between bunches, orbits and fills)
- Trigger is simple jet trigger in HCAL with E_T > 20 GeV
- Fight against HCAL noise and cosmic muons

Stopped particle searches

Background determination

- Noise rate is measured from 95 hours taken at 2-7x10²⁷ cm⁻²s⁻¹
- Data was taken with 62 hours at higher intensities with 312 proton bunches per beam.
- Reject real collisions
- Reject if either beam monitor fired (beam monitor 175m either side)
- Reject if in beam crossing within -2 to 1 of collision BX
- Reject if has reconstructed vertex
- Beam halo filter
- Cosmic filter
- Monitor stability of N₋₁ filters to set uncertainty

Two ways to search

■ Counting experiment - need to measure and normalise background absolutely (big systematic on normalisation) →

Lifetime [s]	Expected Background (\pm stat. \pm syst.)	Observed
1×10^{-7}	$0.8\pm0.2\pm0.2$	2
$1 imes 10^{-6}$	$1.9\pm0.4\pm0.5$	3
$1 imes 10^{-5}$	$4.9\pm1.0\pm1.3$	5
$1 imes 10^6$	$4.9\pm1.0\pm1.3$	5

 Time-profile analysis - build a PDF for gluino decay for a given mass and lifetime - compare shapes with CMS data (no need to normalise) →

Imperial College

Londor

40 Universität Heidelberg Seminar, 20th January 2011.

Stopped particle searches

- Under some assumptions lifetimes from 10µs to 1000s excluded
- So far limits on stopped gluinos → technique could be used to set limits on stopped staus with more data

Imperial College

Londor

Will know much more after the LHC Chamonix workshop
Could be 8 TeV centre-of-mass energy and running in 2012?

42 Universität Heidelberg Seminar, 20th January 2011.

Plans for 2011

Analyses are designed for discovery not limits

- Data-driven background estimates
- Multiple methods and cross-checks built in
- Analyses categorised by topology, not by model
- Analyses designed for maximum coverage, not necessarily best model sensitivity

• We will continue to develop our programme in 2011

- Run current searches until they are no longer appropriate
- In parallel develop and evolve techniques for higher luminosity
- More use of shapes with more data, in 2010 just counting experiments

Imperial College

- Weak production can come into the game (so far only strong)
- Challenges with triggers, pile-up.....

Reach in 2011

CMS-NOTE-2010-008

- Expect us to do better than this!
- Expect our results expressed in less constrained models \rightarrow

44 Universität Heidelberg Seminar, 20th January 2011.

Interpretation/communication

A moving (evolving) target → we need feedback

• First papers

- mSUGRA/CMSSM to connect to previous generations of experiments
- Cross sections x BR and information on efficiencies

Under discussion now between ATLAS/CMS/Theory

- Common simple/less constrained models
- A few slides on this coming up →

• Bit further down the line

- Full likelihoods in some computer format (RooStats?)
- Some more elaborate solution?

Simplified Models

Workshops at CERN and SLAC

- Models proposed at: <u>http://www.lhcnewphysics.org</u>
- Agreed on reference topologies for early searches
- Cover what one might see in the first ~50 pb⁻¹
- All initiated by strong production
- Inspired by SUSY and SUSY-like New Physics (all involve MET)

Increasing order of complexity

- Hadronic decays
- Decays with one or two leptons
- Decays with heavy flavours
- Photon and multi-leptons (based on GGM models as di-photon search)

Imperial College

Simplified Models

Proposal for all-hadronic search

- Squark anti-squark pair production with decay sqark \rightarrow q + χ
- Gluino pair production with decay gluino \rightarrow qqbar + χ
- χ can be the LSP or an intermediate state, decaying to W + LSP
- Kinematics specified by masses
- Direct case mgluino(msquark) vs mLSP 2D plot
- For cascade decays (arbitrary) slices of intermediate particle
- Given "reference" cross section set limits

• Currently under discussion at CMS

47 Universität Heidelberg Seminar, 20th January 2011.

Conclusions

- First SUSY limits from CMS in 2010 are being published
- Preparing programme for 2011/12 run
- Wide range of searches underway
- Need to work closely together to have efficient exchange of information
- Thanks for the invitation to speak today!

Backup: Links

ATLAS latest results

https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults

• ATLAS Physics TDR

http://cdsweb.cern.ch/record/1125884?In=en

CMS latest results

https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults

• CMS Physics TDR

http://cmsdoc.cern.ch/cms/cpt/tdr/

Backup: Benchmark points

Low mass (LM) mSUGRA benchmarks

Benchmark	m0	m1/2	AO	tanb	sgn(mu)	Notes
LM0	200	160	-400	10	1	
LM1	60	250	0	10	+	
LM2	185	350	0	35	+	
LM2mhf360	185	360	0	35	+	
LM3	330	240	0	20	+	
LM4	210	285	0	10	+	
LM5	230	360	0	10	+	
LM6	85	400	0	10	+	
LM7	3000	230	0	10	+	
LM8	500	300	-300	10	+	
LM9	1450	175	0	50	+	
LM9p	1450	230	0	10	+	
LM9t175	1450	175	0	50	+	mtop = 175
LM10	3000	500	0	10	+	
LM11	250	325	0	35	+	
LM12						TBD
LM13						focus point, TBD

High mass (HM) mSUGRA benchmarks

Benchmark	m0	m1/2	A0	tanb	sgn(mu)	Notes
HM1	180	850	0	10	+	
HM2	350	800	0	35	+	
НМ3	700	800	0	10	+	
HM4	1350	600	0	10	+	

GMSB (GM) benchmarks

Benchmark	Lambda	M_mess	N5	C_Grav	tanb	sgn(mu)	Notes
GM1b	80	160	1	1	15	+	
GM1c	100	200	1	1	15	+	
GM1d	120	240	1	1	15	+	
GM1e	140	280	1	1	15	+	
GM1f	160	320	1	1	15	+	
GM1g	180	360	1	1	15	+	

Particle	SU1	SU2	SU3	SU4	SU6	SU8.1	SU9
d_L	764.90	3564.13	636.27	419.84	870.79	801.16	956.07
\tilde{u}_L	760.42	3563.24	631.51	412.25	866.84	797.09	952.47
\tilde{b}_1	697.90	2924.80	575.23	358.49	716.83	690.31	868.06
$\tilde{t_1}$	572.96	2131.11	424.12	206.04	641.61	603.65	725.03
\tilde{d}_R	733.53	3576.13	610.69	406.22	840.21	771.91	920.83
\tilde{u}_R	735.41	3574.18	611.81	404.92	842.16	773.69	923.49
\tilde{b}_2	722.87	3500.55	610.73	399.18	779.42	743.09	910.76
\tilde{t}_2	749.46	2935.36	650.50	445.00	797.99	766.21	911.20
\tilde{e}_L	255.13	3547.50	230.45	231.94	411.89	325.44	417.21
\tilde{v}_e	238.31	3546.32	216.96	217.92	401.89	315.29	407.91
$\tilde{\tau}_1$	146.50	3519.62	149.99	200.50	181.31	151.90	320.22
\tilde{v}_{τ}	237.56	3532.27	216.29	215.53	358.26	296.98	401.08
\tilde{e}_R	154.06	3547.46	155.45	212.88	351.10	253.35	340.86
$\tilde{\tau}_2$	256.98	3533.69	232.17	236.04	392.58	331.34	416.43
ĝ	832.33	856.59	717.46	413.37	894.70	856.45	999.30
$\tilde{\chi}_1^0$	136.98	103.35	117.91	59.84	149.57	142.45	173.31
$\tilde{\chi}_2^0$	263.64	160.37	218.60	113.48	287.97	273.95	325.39
$\tilde{\chi}_{3}^{0}$	466.44	179.76	463.99	308.94	477.23	463.55	520.62
$\tilde{\chi}_4^0$	483.30	294.90	480.59	327.76	492.23	479.01	536.89
$\tilde{\chi}_1^+$	262.06	149.42	218.33	113.22	288.29	274.30	326.00
$\tilde{\chi}_2^+$	483.62	286.81	480.16	326.59	492.42	479.22	536.81
h^0	115.81	119.01	114.83	113.98	116.85	116.69	114.45
H^0	515.99	3529.74	512.86	370.47	388.92	430.49	632.77
A^0	512.39	3506.62	511.53	368.18	386.47	427.74	628.60
H^+	521.90	3530.61	518.15	378.90	401.15	440.23	638.88
t	175.00	175.00	175.00	175.00	175.00	175.00	175.00

50 Universität Heidelberg Seminar, 20th January 2011.