Searches for Supersymmetry at CMS

Alex Tapper
Outline

- Introduction to the LHC and CMS
 - Why you should believe our measurements
- Search strategy
 - What to look for and how to look for it
- Detailed examples
 - Jets + MET
 - Di-photons + MET
 - Long lived stopped particles
- Plans and expectations for 2011
- Interpretation/communication of results
 - How do we tell you what we’ve found or not
The Large Hadron Collider

Overall view of the LHC experiments.

3.5 TeV → p

3.5 TeV ← p
The Large Hadron Collider

\[p + p \rightarrow \text{3.5 TeV} \]

\[\sim 35 \text{ pb}^{-1} \text{ in 2010} \]

Will discuss expectations for 2011 run later

Total Integrated Luminosity 2010 (Mar 30 10:00 UTC - Nov 03 00:00 UTC)

Delivered 47.03 pb\(^{-1}\)

Recorded 43.17 pb\(^{-1}\)
The CMS detector

- 4T solenoid magnet
- Silicon detector (pixel, strips)
- Crystal ECAL $\sigma(E)/E=3%/\sqrt{E}+0.003$,
- Brass/sci. HCAL $\sigma(E)/E=100%/\sqrt{E}+0.05$
- Muon chambers $\sigma(p)/p<10\%$ at 1TeV
• Measurements of jet cross sections and MET resolution

• Jets and MET in good shape already
• Measurements of jet cross sections and MET resolution

• Jets and MET in good shape already
Standard Model physics

- Beautiful reconstruction of W and Z bosons
- Leptons and MET reconstruction performing well
Standard Model physics

- Top-quark pair-production and $Z \rightarrow \tau^+ \tau^-$
- b-tagging and τ-tagging performing well already
Re-discovery of the Standard Model

Original discovery

2006 Dec 2009 Jan 2010 Feb Mar Apr May Jun Jul 2010

"Rediscovery" in CMS (dates approximate)
Search strategy (what and how?)

- Production
 - Squark and gluino expected to dominate
 - Strong production so high cross section
 - Cross section depends only on masses
 - Approx. independent of SUSY model
Search strategy (what and how?)

- **Production**
 - Squark and gluino expected to dominate
 - Strong production so high cross section
 - Cross section depends only on masses
 - Approx. independent of SUSY model

- **Decay**
 - Details of decay chain depend on SUSY model (mass spectra, branching ratios, etc.)
 - Assume R_P conserved \rightarrow decay to lightest SUSY particle (LSP)
 - Assume squarks and gluinos are heavy \rightarrow long decay chains

- **Signatures**
 - MET from LSPs, **high-E_T jets** and **leptons** from long decay chain

- **Focus on robust and simple signatures**
 - Common to wide variety of models
 - Let Standard Model background and detector performance define searches not models
Backgrounds

- **Physics**
 - Standard Model processes that give the same signatures as SUSY
 - Cannot rely on Monte Carlo predictions \rightarrow measure in data

- **Detector effects**
 - Detector noise, mis-measurements etc. that generate MET or extra jets
 - Commissioning and calibration \rightarrow good performance shown earlier

- **Beam related**
 - Beam-halo muons (and cosmic-ray muons), beam-gas events
 - Data and simulation already \rightarrow measure in situ too
Search strategy (what and how?)

<table>
<thead>
<tr>
<th>0-leptons</th>
<th>2-photons</th>
<th>1-lepton</th>
<th>SSDL</th>
<th>OSDL</th>
<th>≥3 leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets + MET</td>
<td>Di-photon + jet + MET</td>
<td>Single lepton + Jets + MET</td>
<td>Same-sign di-lepton + jets + MET</td>
<td>Opposite-sign di-lepton + jets + MET</td>
<td>Multi-lepton</td>
</tr>
</tbody>
</table>

- Generic searches based on MET
- Categorised by numbers of leptons and photons
- Most include jet requirement → strong production
Search strategy (what and how?)

- Very challenging due to large amount and wide range of backgrounds
- However most sensitive search for strongly produced SUSY
- CMS pursues several complementary strategies
- In principle ATLAS should be better suited to this than CMS
- Extend this in the future to b-tagged final states (2010 dataset)
- Extension to τ and top-tagged final states (2011 dataset)
- **Will show you first result from this search**

<table>
<thead>
<tr>
<th>0-leptons</th>
<th>2-photons</th>
<th>1-lepton</th>
<th>SSDL</th>
<th>OSDL</th>
<th>\geq3 leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets + MET</td>
<td>Di-photon + jet + MET</td>
<td>Single lepton + Jets + MET</td>
<td>Same-sign di-lepton + jets + MET</td>
<td>Opposite-sign di-lepton + jets + MET</td>
<td>Multi-lepton</td>
</tr>
</tbody>
</table>
Search strategy (what and how?)

Many gauge mediated models predict photons in final state
- Extend to single photon in future and single photon + lepton
- **Will show you first result from this search**

<table>
<thead>
<tr>
<th>0-leptons</th>
<th>2-photons</th>
<th>1-lepton</th>
<th>SSDL</th>
<th>OSDL</th>
<th>≥3 leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets + MET</td>
<td>Di-photon + jet + MET</td>
<td>Single lepton + Jets + MET</td>
<td>Same-sign di-lepton + jets + MET</td>
<td>Opposite-sign di-lepton + jets + MET</td>
<td>Multi-lepton</td>
</tr>
</tbody>
</table>
Lepton (electron or muon) requirement reduces background considerably

Basically only ttbar left → topological handles
Search strategy (what and how?)

<table>
<thead>
<tr>
<th>0-leptons</th>
<th>2-photons</th>
<th>1-lepton</th>
<th>SSDL</th>
<th>OSDL</th>
<th>≥3 leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets + MET</td>
<td>Di-photon + jet + MET</td>
<td>Single lepton + Jets + MET</td>
<td>Same-sign di-lepton + jets + MET</td>
<td>Opposite-sign di-lepton + jets + MET</td>
<td>Multi-lepton</td>
</tr>
</tbody>
</table>

- Very small Standard Model backgrounds
- Include all three generations of leptons and all cross channels
Search strategy (what and how?)

- Two analyses here: inclusive and Z peak search
- Not including τ final states in 2010
- Several techniques including opposite-sign opposite flavour subtraction
- Shape information and mass edges

<table>
<thead>
<tr>
<th>0-leptons</th>
<th>2-photons</th>
<th>1-lepton</th>
<th>SSDL</th>
<th>OSDL</th>
<th>\geq3 leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets + MET</td>
<td>Di-photon + jet + MET</td>
<td>Single lepton + Jets + MET</td>
<td>Same-sign di-lepton + jets + MET</td>
<td>Opposite-sign di-lepton + jets + MET</td>
<td>Multi-lepton</td>
</tr>
</tbody>
</table>
Search strategy (what and how?)

- Very clean events with very low Standard Model background
- Include all three generations of leptons and all combinations
- Search inclusively, Z peak, with and without MET
- Some striking Standard Model events observed already

<table>
<thead>
<tr>
<th></th>
<th>0-leptons</th>
<th>2-photons</th>
<th>1-lepton</th>
<th>SSDL</th>
<th>OSDL</th>
<th>≥3 leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets + MET</td>
<td>Di-photon + jet + MET</td>
<td>Single lepton + Jets + MET</td>
<td>Same-sign di-lepton + jets + MET</td>
<td>Opposite-sign di-lepton + jets + MET</td>
<td>Multi-lepton</td>
<td></td>
</tr>
</tbody>
</table>
Search strategy (what and how?)

<table>
<thead>
<tr>
<th>0-leptons</th>
<th>2-photons</th>
<th>1-lepton</th>
<th>SSDL</th>
<th>OSDL</th>
<th>≥3 leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets + MET</td>
<td>Di-photon + jet + MET</td>
<td>Single lepton + Jets + MET</td>
<td>Same-sign di-lepton + jets + MET</td>
<td>Opposite-sign di-lepton + jets + MET</td>
<td>Multi-lepton</td>
</tr>
</tbody>
</table>

- **Non-MET based searches**
- **R-parity conserving and “exotic” SUSY**
- **Examples are long lived particles**
- **Will show you first result from stopped gluino search**

Other Strategies:

<table>
<thead>
<tr>
<th>RPV</th>
<th>“Exotic”</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-Parity violating searches</td>
<td>Long-lived particles etc.</td>
</tr>
</tbody>
</table>
All hadronic search pre-selection

- Loose sample of hadronic events
 - Trigger H_T ($\sum E_{Tjets}$) > 150 GeV (RAW)
 - H_T > 250 GeV
 - Vertex consistent with pp collision
 - At least 2 jets with E_T>50 GeV & $|\eta|<3$
 - Leading jet $|\eta|<2.5$
 - $E_{Tj2}>100$ GeV
 - Event veto for isolated electrons and muons with $P_T>10$ GeV
 - Event veto for isolated photons $P_T>25$ GeV

- Dominated by multi-jet QCD

hep-ex/0176391
Final selection

- No dependence on MET ➔ robust for early LHC running
- Originally proposed for di-jet events ➔ generalised up to 6 jets
- $\alpha_T > 0.55$
- $R_{\text{miss}} = H_{\text{Tmiss}} / \text{MET} < 1.25$ (effect of soft jets)
- For $\Delta\phi^* < 0.5$ the $\Delta R_{\text{ECAL}} > 0.3$ (jets pointing to dead CALO cells)
- $H_T > 350$ GeV (beyond previous searches)
Data and Monte Carlo yields

- Data and Monte Carlo expectation in good agreement (errors are stat.)
- QCD is PYTHIA, EWK backgrounds from MADGRAPH
- For \(N_{\text{jets}}=2\) main backgrounds \(Z \rightarrow \nu\bar{\nu}\) and \(W \rightarrow \tau\nu\)
- For \(N_{\text{jets}}>2\) \(t\bar{t}\) also contributes - \(Z/W/ttbar\) approx. equal

<table>
<thead>
<tr>
<th>Selection</th>
<th>Data</th>
<th>SM</th>
<th>QCD multijet</th>
<th>(Z \rightarrow \nu\bar{\nu})</th>
<th>(W + \text{jets})</th>
<th>(t\bar{t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_T > 250) GeV</td>
<td>4.68M</td>
<td>5.81M</td>
<td>5.81M</td>
<td>290</td>
<td>2.0k</td>
<td>2.5k</td>
</tr>
<tr>
<td>(E_{T_j} > 100) GeV</td>
<td>2.89M</td>
<td>3.40M</td>
<td>3.40M</td>
<td>160</td>
<td>610</td>
<td>830</td>
</tr>
<tr>
<td>(H_T > 350) GeV</td>
<td>908k</td>
<td>1.11M</td>
<td>1.11M</td>
<td>80</td>
<td>280</td>
<td>650</td>
</tr>
<tr>
<td>(\alpha_T > 0.55)</td>
<td>37</td>
<td>30.5±4.7</td>
<td>19.5±4.6</td>
<td>4.2±0.6</td>
<td>3.9±0.7</td>
<td>2.8±0.1</td>
</tr>
<tr>
<td>(\Delta R_{\text{ECAL}} > 0.3 \lor \Delta \phi^* > 0.5)</td>
<td>32</td>
<td>24.5±4.2</td>
<td>14.3±4.1</td>
<td>4.2±0.6</td>
<td>3.6±0.6</td>
<td>2.4±0.1</td>
</tr>
<tr>
<td>(R_{\text{miss}} < 1.25)</td>
<td>13</td>
<td>9.3±0.9</td>
<td>0.03±0.02</td>
<td>4.1±0.6</td>
<td>3.3±0.6</td>
<td>1.8±0.1</td>
</tr>
</tbody>
</table>
Inclusive background estimate

- Use kinematics and control regions to estimate all backgrounds
 - Use lower H_T bins 250-300 GeV and 300-350 GeV to extrapolate into signal region 350 GeV
 - Adjust cuts in control regions to preserve kinematics
 - Define $R_{\alpha_T} = N(\alpha_T>x)/N(\alpha_T<x)$
 - For QCD (mismeasurement) expect this to fall as resolution improves with increasing H_T
 - For EWK (real MET) expect flat behaviour. Check with W/ttbar control sample
 - Indicates final selection is QCD free
 - Extrapolate for low to high H_T
 - Result is $9.4^{+4.8}_{-4.0}$ (stat.) ± 1.0 (syst.)
W+jets and ttbar backgrounds

- Select a high P_T muon sample (same as ttbar cross section)
 - Same cuts as signal region excluding muon in calculations ($H_{T\text{miss}} > 140$ GeV)
 - $M_T > 30$ GeV to ensure pure W/ttbar sample - no QCD
 - Use MC efficiencies and acceptances with this muon samples
 - Estimate number of semi-leptonic decays that are not vetoed due to low P_T leptons or leptons out of acceptance
 - Estimate number of hadronic τ decays which end up in the signal sample
 - Result is $6.1^{+2.8}_{-1.9}$ (stat.) ± 1.8 (syst.)
 - Systematic (~30%) is conservative
• Data-driven background estimates
• $Z \rightarrow \nu\nu + \text{jets} \rightarrow$ irreducible background
 ☐ Replacement technique

$Z \rightarrow ll + \text{jets}$
Strength: very clean
Weakness: low statistics

$W \rightarrow l\nu + \text{jets}$
Strength: larger statistics
Weakness: background from SM and SUSY

$\gamma + \text{jets}$
Strength: large statistics and clean at high E_T
Weakness: background at low E_T, theoretical errors
Using $\gamma + \text{jets}$ events

- Select very clean $\gamma + \text{jets}$ sample
- $P_T^{\gamma} > 100$ GeV
- $|\eta^{\gamma}| < 1.45$
- $\Delta R(\gamma,\text{jet}) > 1.0$
- $H_{\text{miss}} > 140$ GeV
- Yields 7 events in data
- Use MC to scale $\gamma \rightarrow Z$
- Result is $4.4^{+2.3}_{-1.6}$ (stat.) ± 1.8 (syst.)
- Largest systematic from $\gamma \rightarrow Z$ theory

Cross check with W sample

- Result is $4.9^{+2.6}_{-1.8}$ (stat.) ± 1.5 (syst.)
- ttbar contamination in muon sample

100 pb$^{-1}$ at 14 TeV CMS
Observed data events

- Background summary
 - Inclusive $9.4^{+4.8}_{-4.0}$ (stat.) ± 1.0 (syst.)
 - EWK $10.5^{+3.6}_{-2.5}$

- Examine events selected in data
 - $M_{\text{eff}} = H_T + H_{\text{Tmiss}}$ scale of event
 - $\Delta\phi^*$ distribution not peaked

- Events consistent with EWK background
Interpretation in CMSSM

- Signal acceptance uncertainty dominated by luminosity error (11%)
- Use Feldman-Cousins method to set 95% CL, using Profile-Likelihood to deal with nuisance parameters
- Upper limit on signal events is 13.4
- p value for SM only = 0.3
- Very weak dependence on $\tan\beta$
- Significant extension of excluded region over Tevatron experiments

Production mechanism | Yields for 35 pb$^{-1}$ | ϵ_{total} (%) | $\epsilon_{\text{signature}}$ (%) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$q\bar{q}$</td>
<td>9.7 ± 0.1</td>
<td>16.0 ± 0.1</td>
<td>22.2 ± 0.4</td>
</tr>
<tr>
<td>$q\bar{g}$</td>
<td>8.8 ± 0.1</td>
<td>14.4 ± 0.1</td>
<td>23.0 ± 0.5</td>
</tr>
<tr>
<td>$g\bar{g}$</td>
<td>0.71 ± 0.02</td>
<td>12.0 ± 0.4</td>
<td>22.5 ± 2.0</td>
</tr>
</tbody>
</table>

$L_{\text{int}} = 35$ pb$^{-1}$, $\sqrt{s} = 7$ TeV
Search with di-photon events

- **Pre-selection**
 - Trigger: single photon $P_{T\gamma} > 30$ GeV
 - Require two photons with $P_{T\gamma} > 30$ GeV and $|\eta\gamma| < 1.4$
 - Shower shape ID cuts
 - Veto if H/E>5%
 - Isolation$^{\text{TRK}} < 0.001x E_T + 2$ GeV
 - Isolation$^{\text{ECAL}} < 0.006x E_T + 4.2$ GeV
 - Isolation$^{\text{HCAL}} < 0.0025x E_T + 2.2$ GeV

- Distinguish electrons and photons by track in pixel detector
- At least one jet $E_T > 30$ GeV (cleans up beam and cosmic backgrounds)

- **Define two control samples for later**
 - fake-fake (ff) - fail track isolation or shower shape
 - Z (ee) - two electrons and Z mass window cut (90 \pm 20 GeV)
Electroweak backgrounds

- Irreducible SM backgrounds $Z\gamma\gamma$ and $W\gamma\gamma$ negligible

- Main electroweak background
 - $W \rightarrow e\nu$ where e is mis-ID as a γ and also a real or fake γ in the event
 - Measure mis-ID rate $f_{e\rightarrow\gamma}$ from the number of $Z \rightarrow ee$ events in the ee and $e\gamma$ samples
 - Result is $1.4 \pm 0.4\%$
 - Apply this to $e\gamma$ sample to get prediction
QCD backgrounds

- ECAL resolution much better than HCAL
- MET resolution dominated by HCAL
- Reweight ff and ee control samples to signal $\gamma\gamma E_T$ spectrum
- Normalise at low MET (<20 GeV)
Proof that if a signal is was there we would have seen it
• “Discover” Standard Model $W\gamma$ events by switching to $e\gamma$ sample
Interpretation in a GGM model

- Observe 1 event MET >50 GeV consistent with 1.2 ± 0.8 background

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Events</th>
<th>stat error</th>
<th>reweight error</th>
<th>normalization error</th>
</tr>
</thead>
<tbody>
<tr>
<td>γγ events</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fake-fake QCD background est.</td>
<td>0.49 ± 0.40</td>
<td>±0.36</td>
<td>±0.06</td>
<td>±0.07</td>
</tr>
<tr>
<td>Z → ee QCD background est.</td>
<td>1.67 ± 0.64</td>
<td>±0.46</td>
<td>±0.38</td>
<td>±0.23</td>
</tr>
<tr>
<td>background from eγ</td>
<td>0.04 ± 0.15</td>
<td>±0.15</td>
<td>±0.0</td>
<td>±0.01</td>
</tr>
<tr>
<td>Total Background ≥ 50 GeV (using ff)</td>
<td>0.53 ± 0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Background ≥ 50 GeV (using ee)</td>
<td>1.71 ± 0.68</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Only three “light” particles: neutralino, gluino, and squark

- Gluino decays: Two jets and gaugino. Can be 3-body or cascade depending on m(squark)-m(gluino)

- Squark decays: If heavier then gluinos: quark + gluino gives three jets + gaugino. If lighter then gluino: quark and gaugino gives one jet + gaugino

- Each event has: Two gauginos ➔ in our simple model neutralinos ➔ two Photons + MET and between two and six jets from SUSY cascades
Interpretation in a GGM model

- 95% CL upper limit for simple model for neutralino mass = 150 GeV
- Upper limits between 0.3 and 1.1 pb depending on masses
- Factor of ~10 better than Tevatron could do with 6 fb$^{-1}$
Long-lived particle searches

- Long-lived particles possible in many theories
 - For example many SUSY models with stau NLSP with Gravitino LSP

- Long-lived charged particles with lifetimes of $O(100-1000)$s could explain the discrepancy between Li abundance and BBN

- Two complementary approaches:
 - High momentum tracks with large dE/dx E loss (high $\beta > 0.4$)
 - **Stopped particles** may decay any time \rightarrow signal out-of-time with LHC beam
Stopped particle searches

- Long-lived particles produced in pp collisions
- Particles stop in detector in brass absorber in barrel hadronic calorimeter
- Search for decays during non-collision times (between bunches, orbits and fills)

- Trigger is simple jet trigger in HCAL with $E_T > 20$ GeV
- Fight against HCAL noise and cosmic muons
Stopped particle searches

- **Background determination**
 - Noise rate is measured from 95 hours taken at $2-7 \times 10^{27} \text{ cm}^{-2}\text{s}^{-1}$
 - Data was taken with 62 hours at higher intensities with 312 proton bunches per beam.

- Reject real collisions
- Reject if either beam monitor fired (beam monitor 175m either side)
- Reject if in beam crossing within -2 to 1 of collision BX
- Reject if has reconstructed vertex
- Beam halo filter
- Cosmic filter

- Monitor stability of N_{-1} filters to set uncertainty
Two ways to search

- Counting experiment - need to measure and normalise background absolutely (big systematic on normalisation)

<table>
<thead>
<tr>
<th>Lifetime [s]</th>
<th>Expected Background (± stat. ± syst.)</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^{-7}</td>
<td>0.8 ± 0.2 ± 0.2</td>
<td>2</td>
</tr>
<tr>
<td>1×10^{-6}</td>
<td>1.9 ± 0.4 ± 0.5</td>
<td>3</td>
</tr>
<tr>
<td>1×10^{-5}</td>
<td>4.9 ± 1.0 ± 1.3</td>
<td>5</td>
</tr>
<tr>
<td>1×10^{6}</td>
<td>4.9 ± 1.0 ± 1.3</td>
<td>5</td>
</tr>
</tbody>
</table>

- Time-profile analysis - build a PDF for gluino decay for a given mass and lifetime - compare shapes with CMS data (no need to normalise)
stopped particle searches

- Under some assumptions lifetimes from 10µs to 1000s excluded
- So far limits on stopped gluinos → technique could be used to set limits on stopped staus with more data
Expectations for 2011

- Will know much more after the LHC Chamonix workshop
- Could be 8 TeV centre-of-mass energy and running in 2012?

D. Acosta
Plans for 2011

- Analyses are designed for discovery not limits
 - Data-driven background estimates
 - Multiple methods and cross-checks built in
 - Analyses categorised by topology, not by model
 - Analyses designed for maximum coverage, not necessarily best model sensitivity

- We will continue to develop our programme in 2011
 - Run current searches until they are no longer appropriate
 - In parallel develop and evolve techniques for higher luminosity
 - More use of shapes with more data, in 2010 just counting experiments
 - Weak production can come into the game (so far only strong)
 - Challenges with triggers, pile-up.....
Reach in 2011

- Expect us to do better than this!
- Expect our results expressed in less constrained models →
Interpretation/communication

● A moving (evolving) target ➔ we need feedback

● First papers
 ▪ mSUGRA/CMSSM to connect to previous generations of experiments
 ▪ Cross sections x BR and information on efficiencies

● Under discussion now between ATLAS/CMS/Theory
 ▪ Common simple/less constrained models
 ▪ A few slides on this coming up ➔

● Bit further down the line
 ▪ Full likelihoods in some computer format (RooStats?)
 ▪ Some more elaborate solution?
Simplified Models

- Workshops at CERN and SLAC
 - Models proposed at: http://www.lhcnewphysics.org
 - Agreed on reference topologies for early searches
 - Cover what one might see in the first $\sim 50 \text{ pb}^{-1}$
 - All initiated by strong production
 - Inspired by SUSY and SUSY-like New Physics (all involve MET)

- Increasing order of complexity
 - Hadronic decays
 - Decays with one or two leptons
 - Decays with heavy flavours
 - Photon and multi-leptons (based on GGM models as di-photon search)
Simplified Models

- Proposal for all-hadronic search
 - Squark anti-squark pair production with decay squark → q + χ
 - Gluino pair production with decay gluino → qqbar + χ
 - χ can be the LSP or an intermediate state, decaying to W + LSP
 - Kinematics specified by masses
 - Direct case \(m_{\text{gluino}}(m_{\text{squark}}) \) vs \(m_{\text{LSP}} \) 2D plot
 - For cascade decays (arbitrary) slices of intermediate particle
 - Given “reference” cross section set limits

- Currently under discussion at CMS
Conclusions

- First SUSY limits from CMS in 2010 are being published
- Preparing programme for 2011/12 run
- Wide range of searches underway
- Need to work closely together to have efficient exchange of information
- Thanks for the invitation to speak today!
Backup: Links

- **ATLAS latest results**
 - https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults

- **ATLAS Physics TDR**

- **CMS latest results**
 - https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults

- **CMS Physics TDR**
Backup: Benchmark points

Low mass (LM) mSUGRA benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>m0</th>
<th>m1/2</th>
<th>A0</th>
<th>tanb</th>
<th>sgn(mu)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM0</td>
<td>200</td>
<td>160</td>
<td>-400</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM1</td>
<td>60</td>
<td>250</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2</td>
<td>185</td>
<td>350</td>
<td>0</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2nh360</td>
<td>185</td>
<td>360</td>
<td>0</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM3</td>
<td>330</td>
<td>240</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM4</td>
<td>210</td>
<td>285</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM5</td>
<td>230</td>
<td>360</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM6</td>
<td>85</td>
<td>400</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM7</td>
<td>800</td>
<td>230</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM8</td>
<td>500</td>
<td>300</td>
<td>-300</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM9</td>
<td>1450</td>
<td>175</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM9p</td>
<td>1450</td>
<td>230</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM9t175</td>
<td>1450</td>
<td>175</td>
<td>50</td>
<td>50</td>
<td>mtop = 175</td>
<td></td>
</tr>
<tr>
<td>LM10</td>
<td>3000</td>
<td>500</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM11</td>
<td>250</td>
<td>325</td>
<td>0</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>LM13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>focus point, TBD</td>
<td></td>
</tr>
</tbody>
</table>

High mass (HM) mSUGRA benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>m0</th>
<th>m1/2</th>
<th>A0</th>
<th>tanb</th>
<th>sgn(mu)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM1</td>
<td>180</td>
<td>850</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM2</td>
<td>550</td>
<td>800</td>
<td>0</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM3</td>
<td>700</td>
<td>800</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM4</td>
<td>1350</td>
<td>600</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GMSB (GM) benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Lambda</th>
<th>M_mess</th>
<th>Ns</th>
<th>C_Gray</th>
<th>tanb</th>
<th>sgn(mu)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM1b</td>
<td>80</td>
<td>160</td>
<td>l</td>
<td>l</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM1c</td>
<td>100</td>
<td>200</td>
<td>l</td>
<td>l</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM1d</td>
<td>120</td>
<td>240</td>
<td>l</td>
<td>l</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM1e</td>
<td>140</td>
<td>280</td>
<td>l</td>
<td>l</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM1f</td>
<td>160</td>
<td>320</td>
<td>l</td>
<td>l</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM1g</td>
<td>180</td>
<td>360</td>
<td>l</td>
<td>l</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particle</th>
<th>SU1</th>
<th>SU2</th>
<th>SU3</th>
<th>SU4</th>
<th>SU6</th>
<th>SU8.1</th>
<th>SU9</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_L</td>
<td>764.90</td>
<td>3564.13</td>
<td>636.27</td>
<td>419.84</td>
<td>870.79</td>
<td>801.16</td>
<td>956.07</td>
</tr>
<tr>
<td>b_L</td>
<td>760.42</td>
<td>3563.24</td>
<td>631.51</td>
<td>412.25</td>
<td>866.84</td>
<td>797.09</td>
<td>952.47</td>
</tr>
<tr>
<td>b_1</td>
<td>697.90</td>
<td>2924.80</td>
<td>575.23</td>
<td>358.49</td>
<td>716.83</td>
<td>690.31</td>
<td>868.06</td>
</tr>
<tr>
<td>t_1</td>
<td>572.96</td>
<td>2131.11</td>
<td>424.12</td>
<td>206.04</td>
<td>641.61</td>
<td>603.65</td>
<td>725.03</td>
</tr>
<tr>
<td>d_R</td>
<td>733.53</td>
<td>3576.13</td>
<td>610.69</td>
<td>406.22</td>
<td>840.21</td>
<td>771.91</td>
<td>920.83</td>
</tr>
<tr>
<td>u_R</td>
<td>735.41</td>
<td>3574.18</td>
<td>611.81</td>
<td>404.92</td>
<td>842.16</td>
<td>773.69</td>
<td>923.49</td>
</tr>
<tr>
<td>b_2</td>
<td>722.87</td>
<td>3500.55</td>
<td>610.73</td>
<td>399.18</td>
<td>779.42</td>
<td>743.09</td>
<td>910.76</td>
</tr>
<tr>
<td>t_2</td>
<td>749.46</td>
<td>2935.36</td>
<td>650.50</td>
<td>445.00</td>
<td>797.99</td>
<td>766.21</td>
<td>911.20</td>
</tr>
<tr>
<td>e_L</td>
<td>255.13</td>
<td>3547.50</td>
<td>230.45</td>
<td>231.94</td>
<td>411.89</td>
<td>325.44</td>
<td>417.21</td>
</tr>
<tr>
<td>v_c</td>
<td>238.31</td>
<td>3546.32</td>
<td>216.96</td>
<td>217.92</td>
<td>401.89</td>
<td>315.29</td>
<td>407.91</td>
</tr>
<tr>
<td>t_1</td>
<td>146.50</td>
<td>3519.62</td>
<td>149.99</td>
<td>200.50</td>
<td>181.31</td>
<td>151.90</td>
<td>320.22</td>
</tr>
<tr>
<td>v_t</td>
<td>237.56</td>
<td>3532.27</td>
<td>216.29</td>
<td>215.53</td>
<td>358.26</td>
<td>296.98</td>
<td>401.08</td>
</tr>
<tr>
<td>e_R</td>
<td>154.06</td>
<td>3547.46</td>
<td>155.45</td>
<td>212.88</td>
<td>351.10</td>
<td>253.35</td>
<td>340.86</td>
</tr>
<tr>
<td>t_2</td>
<td>256.98</td>
<td>3533.69</td>
<td>232.17</td>
<td>236.04</td>
<td>392.58</td>
<td>331.34</td>
<td>416.43</td>
</tr>
<tr>
<td>g</td>
<td>832.33</td>
<td>856.59</td>
<td>717.46</td>
<td>413.37</td>
<td>894.70</td>
<td>856.45</td>
<td>999.30</td>
</tr>
<tr>
<td>X_1^0</td>
<td>136.88</td>
<td>103.35</td>
<td>117.91</td>
<td>59.84</td>
<td>149.57</td>
<td>142.45</td>
<td>173.31</td>
</tr>
<tr>
<td>X_2^+</td>
<td>263.64</td>
<td>160.37</td>
<td>218.60</td>
<td>113.48</td>
<td>287.97</td>
<td>273.95</td>
<td>325.39</td>
</tr>
<tr>
<td>X_3^0</td>
<td>466.44</td>
<td>179.76</td>
<td>463.99</td>
<td>308.94</td>
<td>477.23</td>
<td>463.55</td>
<td>520.62</td>
</tr>
<tr>
<td>Z_4^+</td>
<td>483.30</td>
<td>294.90</td>
<td>480.59</td>
<td>327.67</td>
<td>492.23</td>
<td>479.01</td>
<td>536.89</td>
</tr>
<tr>
<td>Z_5^+</td>
<td>262.06</td>
<td>149.42</td>
<td>218.33</td>
<td>113.22</td>
<td>288.29</td>
<td>274.30</td>
<td>326.00</td>
</tr>
<tr>
<td>Z_6^+</td>
<td>483.62</td>
<td>286.81</td>
<td>480.16</td>
<td>326.59</td>
<td>492.42</td>
<td>479.22</td>
<td>536.81</td>
</tr>
<tr>
<td>h^0</td>
<td>115.81</td>
<td>119.01</td>
<td>114.83</td>
<td>113.98</td>
<td>116.85</td>
<td>116.69</td>
<td>114.45</td>
</tr>
<tr>
<td>H^0</td>
<td>515.99</td>
<td>3529.74</td>
<td>512.86</td>
<td>370.47</td>
<td>388.92</td>
<td>430.49</td>
<td>632.77</td>
</tr>
<tr>
<td>A^0</td>
<td>512.39</td>
<td>3506.62</td>
<td>511.53</td>
<td>368.18</td>
<td>386.47</td>
<td>427.74</td>
<td>628.60</td>
</tr>
<tr>
<td>H^+</td>
<td>521.90</td>
<td>3530.61</td>
<td>518.15</td>
<td>378.90</td>
<td>401.15</td>
<td>440.23</td>
<td>638.88</td>
</tr>
<tr>
<td>t</td>
<td>173.00</td>
<td>175.00</td>
<td>175.00</td>
<td>175.00</td>
<td>175.00</td>
<td>175.00</td>
<td>175.00</td>
</tr>
</tbody>
</table>