

Status of Searches for Dark Matter at the LHC

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

Imperial College London

Alex Tapper for the ATLAS and CMS collaborations

Why Dark Matter?

- Empirical evidence from astronomical observations
- What do we know?
 - Interacts gravitationally, electrically and colour neutral and long lived
 - We assume it interacts weakly with the **Standard Model**
 - Most studied class of theories is weakly interacting massive particle

Detecting Dark Matter

- Complementary ways to search for Dark Matter
- Same particles .. very different energy scales .. common theory framework?

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

З

Intermezzo: Interpretation

• Simplified Models (à la SUSY) focus of LHC community

- Avoid validity concerns of EFT @ LHC
- Capture generic signatures common to many complete theories
- Express results in terms of couplings gDM and gSM, Mmed, and mDM

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

arXiv:1603.04156 arXiv:1703.05703

Detecting Dark Matter @ LHC

Detecting Dark Matter @ LHC

Missing energy from invisible Dark Matter particles

 $p_{\rm T}^{\rm miss} = |\Sigma_i \overrightarrow{p_i}|$

Invariant mass for resonant production of mediator particles

$$M_{12} = \sqrt{(E_1 + E_2)^2 - |\vec{p_1} + \vec{p_2}|^2}$$

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

6

Dark Matter signatures @ LHC

- Wide range of signatures probed for hints of Dark Matter...
 - Invisible/mono-objects: jet, γ, Z/W, h, b, t(t)....
 - Visible/mediator: dijets, boosted jets, leptoquarks...
 - Long-lived particles (see talk of J. Alimena)
 - SUSY decay chains (see talk of M. Wielers)
 - Hidden sector particles (see talk of J. Alimena)
- Crucial to cover all possible signatures
- Most analyses on 2015/16 data $\rightarrow 36$ fb⁻¹
- <u>Cover selection of representative/new results</u>

Invisible (mono-object) searches

P_Tmiss₊jet

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

Couplings fixed to standard values

CMS Phys. Rev. D 97 (2018) 092005 9

P_T miss+V

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

ATLAS Eur. Phys. J. C 77 (2017) 393 ¹⁰

P_Tmiss₊Higgs

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

- Combination of Higgs channels (TT, bb, YY, WW, ZZ)
- Sensitivity driven by bb channel (prel. result with 80 fb⁻¹ ATLAS-CONF-2018-039)

11

$P_T miss_+(t)t$

P_Tmiss₊tt

- Leptonic and hadronic top decay channels included
- Combination for limit

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

Mediator searches

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

14

Dijets

- Complementary to the mono-object searches
- Experimentally cleaner and easier
- Higher sensitivity than invisible searches
- Dark Matter too heavy to produce or weak coupling to mediator
- Include wide variety of channels
 - Dijet, dijet + ISR (γ , jet), tt resonance...

P_Tmiss₊VBF

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

arXiv:1809.06682

P_Tmiss₊VBF

• BR (H \rightarrow invs.) < 0.19 (0.15 exp.) combination

Putting it all together...

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

18

Combined limits

- Combine the mono-object and **vector** mediator searches
- Complementary sensitivity in $m_x m_{med}$ space
- Impact of di-lepton constraints

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

Combined limits

- Combine the mono-object and **axial-vector** mediator searches
- Complementary sensitivity in m_x m_{med} space
- Impact of di-lepton constraints

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

Combined limits

- Cross section limits for vector and axial-vector mediator searches
- Comparison of collider and direct detection limits

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

Future prospects

P_Tmiss₊ et

- Projections for future data samples
 - Run 1-3: 300 fb⁻¹
 - HL-LHC: 3 ab-1
- Systematics will play a role in sensitivity

P_Tmiss_+Z

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

CMS-PAS-FTR-18-007

- Different mediator masses
- Systematics important

- Broad search programme at the LHC
- So far no significant discrepancies with Standard Model predictions
- More analysis details in the parallel talks
- Future prospects
 - Completed analyses mainly based on 36 fb⁻¹ of data
 - Full Run 2 dataset analyses based on 140 fb⁻¹ in progress plenty more to come!

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

• LHC Dark Matter searches complementary to direct and indirect searches

Projections to 300 fb⁻¹ and 3000 fb⁻¹ studied — expect improvements in analyses too

Further information

- LPCC Dark Matter Working Group
 - http://lpcc.web.cern.ch/content/lhc-dm-wg-wg-dark-matter-searches-lhc
- ATLAS and CMS results
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Acknowledgments

Thanks to Shih-Chieh Hsu for kind use of many useful diagrams

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/DM.html

Backup

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

27

Reference simplified models

- Assume Dark Matter candidate is a Dirac fermion
- (Majorana would not change kinematics)
- Meditator assumed to be a boson
 - $g_{DM} = 1 g_{SM} = 0.25$ for spin 1 vector or axial-vector mediator
 - $g_{DM} = 1 g_{SM} = 1$ for spin 0 scaler or pseudo-scaler mediator and proportional to m_f (min FV) Minimum decay width calculated from couplings and mass
- Kinematics do not dependent on couplings

Comparisons of (in)direct and collider sensitivity

	Vecto		
Spin 1 (electroweak couplings)	$g_{DM} Z'_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{$		
	Scale		
Snin ()	$g_{DM}S_{J}$		
(Yukawa couplings)	Direct detection equally sensitive regions of parar		

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

or:

 $\bar{\chi}\gamma^{\mu}\chi$

nore sensitive ept at low DM es

er:

 $\overline{\chi}\chi$

and collider e in different meter space

Axial-vector:

 $g_{DM} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi$

Direct detection and colliders equally sensitive in different regions of parameters space.

Pseudo-scalar:

 $g_{DM}S\bar{\chi}\gamma^5\chi$

No limits from direct detection only indirect. Colliders provide limits similar to scalar.

2HDM

- DM couples to new spin 0 mediator and coupling to SM via mixing with Higgs
- Satisfy constraints from LHC and achieve DM density
- 2HDM+a
 - Three new scalars (H, H⁺, H⁻)
 - Two new pseudo scalars (a,A)
 - $\tan\beta = 1$
 - A couples to DM
- $m_{DM} = 100 \text{ GeV}$
- Similarly for 2HDM+V

JHEP 05 (2019) 142

30

Higgs \rightarrow invisible combination

31st Rencontres de Blois - Particle Physics and Cosmology, 2-7 June 2019, Blois, France.

arXiv:1904.0510

Analysis	\sqrt{s}	Int. luminosity	Observed	Expected	p _{SM} -value	Reference
Run 2 VBF	13 TeV	36.1 fb ⁻¹	0.37	$0.28^{+0.11}_{-0.08}$	0.19	[36]
Run 2 Z(lep)H	13 TeV	36.1 fb ⁻¹	0.67	$0.39^{+0.17}_{-0.11}$	0.06	[37]
Run 2 V(had)H	13 TeV	36.1 fb ⁻¹	0.83	$0.58^{+0.23}_{-0.16}$	0.12	[38]
Run 2 Comb.	13 TeV	36.1 fb ⁻¹	0.38	$0.21^{+0.08}_{-0.06}$	0.03	this Letter
Run 1 Comb.	7, 8 TeV	4.7, 20.3 fb ⁻¹	0.25	$0.27^{+0.10}_{-0.08}$	<u> </u>	[35]
Run 1+2 Comb.	7, 8, 13 TeV	4.7, 20.3, 36.1 fb ⁻¹	0.26	$0.17^{+0.07}_{-0.05}$	0.10	this Letter
	*					

