

Early SUSY searches at the LHC

Alex Tapper

on behalf of the ATLAS & CMS collaborations

- Introduction
- Search strategy
- Searches
- Background estimates
- Discovery reach
- Summary

London

Introduction

- Many different SUSY scenarios investigated by ATLAS & CMS
- My brief is to describe plans for early SUSY searches
- What we plan to do with the 2010 data
 - Stick to studies at 10 TeV centre-of-mass energy and < 1 fb⁻¹ of data

Imperial College

ondo

- Some comments on 7 TeV centre-of-mass towards the end
- Break my own rule only to illustrate some background methods

- Be as model independent as possible
 - But the MSSM has > 100 parameters
 - Need more constrained models
 - Choose a set of benchmark points that are representative of a range of topologies and areas of phase space
 - Range of models
 - MSUGRA (high and low masses)
 - GMSB
 - Split SUSY
 - In this talk MSUGRA at low masses, just above the Tevatron
 - SU4 for ATLAS

Full details of benchmark points in backup slides

Imperial College London

- Be as model independent as possible
 - But the MSSM has > 100 parameters
 - Need more constrained models
 - Choose a set of benchmark points that are representative of a range of topologies and areas of phase space
 - Range of models
 - MSUGRA (high and low masses)
 - GMSB
 - Split SUSY
 - In this talk MSUGRA at low masses, just above the Tevatron
 - LM0 and LM1 for CMS

J. Phys. G: Nucl. Part. Phys. 34 (2006)

Full details of benchmark points in backup slides

Imperial College London

• Production

- Squark and gluino expected to dominate
- Strong production so high cross section
- Cross section depends only on masses
- Approx. independent of SUSY model

Production

- Squark and gluino expected to dominate
- Strong production so high cross section
- Cross section depends only on masses

Imperial College

Approx. independent of SUSY model

Decay

- Details of decay chain depend on SUSY model (mass spectra, branching ratios, etc.)
- Assume R_P conserved → decay to lightest SUSY particle (LSP)
- Assume squarks and gluinos are heavy → long decay chains

Signatures

- MET from LSPs, high-E_T jets and leptons from long decay chain
- Focus on robust and simple signatures
 - Common to wide variety of models
 - Let Standard Model background and detector performance define searches not models
- 6 XXth Hadron Collider Physics Symposium, 16 20 November, 2009, Evian, France.

• How might such a generic search look?

ATL-PHYS-PUB-2009-084

Imperial College

Londor

- Jet E_T > 100 (40) GeV
- $\Delta \Phi(\text{jet}_i, \text{MET}) > 0.2 \text{ rad}$
- Lepton E_T > 20 (10) GeV
- MET > 80 GeV
- Meff = $\Sigma E_T^{jet} + \Sigma E_T^{lep} + MET$
- MET > 0.2-0.3 x M_{eff}
- S_T>0.2
- M_T > 100 GeV
- Good S/B for most channels (200 pb⁻¹ @ 10 TeV COM) but...
- Backgrounds straight from Monte Carlo
- Key is measuring SM backgrounds from data with systematics
- 7 XXth Hadron Collider Physics Symposium, 16 20 November, 2009, Evian, France.

Backgrounds

Physics

- Standard Model processes that give the same signatures as SUSY
- Cannot rely on Monte Carlo predictions → measure in data

Detector effects

Detector noise, mis-measurements etc. that generate MET or extra jets

Imperial College

Commissioning and calibration (see previous talks)

Beam related

- Beam-halo muons (and cosmic-ray muons), beam-gas events
- Data and simulation already → measure in situ too

Backgrounds

- Data-driven background estimates are the key challenge in early SUSY searches
- General idea is find a control region where SM is dominant and use this to predict SM background in signal region
- Two approaches pursued:
 - Matrix (ABCD) methods → playing variables off against each other

Imperial College

- In both cases need to identify clean SM control region
- Difficult to avoid using Monte Carlo in some way
- Will discuss searches giving examples of data-driven methods →

ATL-PHYS-PUB-2009-084

Imperial College

London

- All-hadronic search highly sensitive to SUSY
- But suffers from many backgrounds
- Nice examples of backgrounds both from detector effects and from Standard Model physics

- Mis-measurement of a jet leads to MET along the jet axis
- Remove with $\Delta \Phi(\text{jet}_i, \text{MET}) > 0.2 \text{ rad}$

arXiv:0901.0512 (2009)

Several methods developed to predict MET tail from QCD events

- Matrix methods to estimate from control regions
- Smearing method →

11 XXth Hadron Collider Physics Symposium, 16 - 20 November, 2009, Evian, France.

- Derive Gaussian part of smearing function from γ + jet control sample
- Derive non-Gaussian part from Mercedes events, requiring that the MET is co-linear with one of the jets
- Combine smearing functions, normalising with di-jet sample
- Apply smearing function to low MET events to predict the tail in the high MET signal region

Imperial College London

Imperial College

Londor

- A novel approach combining angular and energy measurements
- No dependence on MET → robust for early LHC running
- Originally proposed for di-jet events → generalised up to 6 jets
- Perfectly balanced events have $\alpha_T=0.5$ (cut at $\alpha_T>0.55$)
- Mis-measurement of either jet leads to lower values

Background estimates

Data-driven background estimates

- Find a control region in phase space where SM background dominates
- Use measurements in this region to infer SM background in signal region
- Example Z → vv + jets → irreducible background
- Replacement technique

Z → II + jets Strength: very clean Weakness: low statistics

 $W \rightarrow lv + jets$ Strength: larger statistics Weakness: background from SM and SUSY

 γ + jets Strength: large statistics and clean at high E_T Weakness: background at low E_T, theoretical errors

> Imperial College London

Background estimates

• Select γ + ≥3 jets with E γ >150 GeV

- Clean sample S/B>20
- Remove photon from the event
- Recalculate MET
- Normalise with σ(Z+jets)/σ(γ+jets) from MC or measurements

100 pb⁻¹ @ 14 TeV COM

London

Imperial College

CMS-PAS-SUS-08-002

Single-lepton search

ATL-PHYS-PUB-2009-084

Imperial College

London

- Requiring one lepton (e or µ) suppresses QCD background powerfully
- Highly sensitive to SUSY
- Backgrounds come from Standard Model processes with neutrinos → real MET
- In particular top and W decays

Background estimates

Data-driven background estimates

ATL-PHYS-PUB-2009-084

Imperial College

ondo

- Find a control region in phase space where SM background dominates
- Use measurements in this region to infer SM background in signal region
- Example W, top backgrounds to single-lepton search
- Playing two discriminate quantities off against each other
- Well known matrix (M_T) method
 - Use low M_T control region
 - Predict MET spectrum
 - Weaknesses
 - Non-independence of variables
 - Signal contamination
 - More sophisticated methods ->

Background estimates

• "Tiles" method

ATL-PHYS-PUB-2009-077

- Use the Monte Carlo prediction for the shapes of SM backgrounds
- Assume independence of variables for signal

- Can express N_{evts} in each region in terms of fSM and f^{SUSY}
- Take fSM from MC for each region and solve the system of linear equations
- Predicts the number of SM background and SUSY signal events in each region
- Background prediction not biassed by signal contamination
- 18 XXth Hadron Collider Physics Symposium, 16 20 November, 2009, Evian, France.

Di-lepton searches

- Same sign searches
 - Very low Standard Model background rate
 - Backgrounds from charge mis-identified top events (QCD in T channel)
- Opposite sign
 - Use opposite-sign, opposite-flavour sample to subtract SM background

Imperial College

Londor

Di-lepton searches

CMS-PAS-SUS-09-002

• Fit ee, µµ and eµ distributions simultaneously

- Resolution function and efficiencies from data
- 200 pb⁻¹ @ 10 TeV
- Di-leptonic end-point m_{II,max}=51.3 ± 1.5 (stat.) ± 0.9 (syst.) GeV [52.7 GeV]
- Nice example of what could be done with modest dataset

20 XXth Hadron Collider Physics Symposium, 16 - 20 November, 2009, Evian, France.

Discovery reach @ 10 TeV

ATL-PHYS-PUB-2009-084

- Scan M_{eff} cut for best sensitivity (50% error on backgrounds)
- All-hadronic and single-lepton searches vie for highest sensitivity
- Clear discovery potential beyond the Tevatron with 200 pb⁻¹ @ 10 TeV
- 21 XXth Hadron Collider Physics Symposium, 16 20 November, 2009, Evian, France.

Discovery reach @ 7 TeV

Chamonix 2009

Imperial College

London

- Discovery reach for single-lepton
 + jets + MET channel
- Need to get above the 400 GeV line to be competitive
- Possible with > 100 pb⁻¹ @ 7 TeV
- 10 TeV much better!

• Early searches based on robust generic signatures

- Sensitive as possible to a variety of new physics models
- A wide range of data-driven techniques developed to measure efficiencies and backgrounds

Imperial College

- Redundancy builds confidence
- Eagerly awaiting LHC collisions!

Backup: Links

- ATLAS latest results
 - https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults
- ATLAS Physics TDR
 - http://cdsweb.cern.ch/record/1125884?In=en
- CMS latest results
 - https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults

• CMS Physics TDR

http://cmsdoc.cern.ch/cms/cpt/tdr/

Backup: Benchmark points

Low mass (LM) mSUGRA benchmarks

Benchmark	m0	m1/2	AO	tanb	sgn(mu)	Notes
LM0	200	160	-400	10	1	
LM1	60	250	0	10	+	
LM2	185	350	0	35	+	
LM2mhf360	185	360	0	35	+	
LM3	330	240	0	20	+	
LM4	210	285	0	10	+	
LM5	230	360	0	10	+	
LM6	85	400	0	10	+	
LM7	3000	230	0	10	+	
LM8	500	300	-300	10	+	
LM9	1450	175	0	50	+	
LM9p	1450	230	0	10	+	
LM9t175	1450	175	0	50	+	mtop = 175
LM10	3000	500	0	10	+	
LM11	250	325	0	35	+	
LM12						TBD
LM13						focus point, TBD

High mass (HM) mSUGRA benchmarks

Benchmark	m0	m1/2	A0	tanb	sgn(mu)	Notes
HM1	180	850	0	10	+	
HM2	350	800	0	35	+	
HM3	700	800	0	10	+	
HM4	1350	600	0	10	+	

GMSB (GM) benchmarks

Benchmark	Lambda	M_mess	N5	C_Grav	tanb	sgn(mu)	Notes
GM1b	80	160	1	1	15	+	
GM1c	100	200	1	1	15	+	
GM1d	120	240	1	1	15	+	
GM1e	140	280	1	1	15	+	
GM1f	160	320	1	1	15	+	
GM1g	180	360	1	1	15	+	

Partic	le SU1	SU2	SU3	SU4	SU6	SU8.1	SU9
d_L	764.90	3564.13	636.27	419.84	870.79	801.16	956.07
\tilde{u}_L	760.42	3563.24	631.51	412.25	866.84	797.09	952.47
\tilde{b}_1	697.90	2924.80	575.23	358.49	716.83	690.31	868.06
\tilde{t}_1	572.96	2131.11	424.12	206.04	641.61	603.65	725.03
\tilde{d}_R	733.53	3576.13	610.69	406.22	840.21	771.91	920.83
\tilde{u}_R	735.41	3574.18	611.81	404.92	842.16	773.69	923.49
\tilde{b}_2	722.87	3500.55	610.73	399.18	779.42	743.09	910.76
\tilde{t}_2	749.46	2935.36	650.50	445.00	797.99	766.21	911.20
\tilde{e}_L	255.13	3547.50	230.45	231.94	411.89	325.44	417.21
\tilde{v}_e	238.31	3546.32	216.96	217.92	401.89	315.29	407.91
$\tilde{\tau}_1$	146.50	3519.62	149.99	200.50	181.31	151.90	320.22
\tilde{v}_{τ}	237.56	3532.27	216.29	215.53	358.26	296.98	401.08
\tilde{e}_R	154.06	3547.46	155.45	212.88	351.10	253.35	340.86
$\tilde{\tau}_2$	256.98	3533.69	232.17	236.04	392.58	331.34	416.43
ĝ	832.33	856.59	717.46	413.37	894.70	856.45	999.30
$\tilde{\chi}_1^0$	136.98	103.35	117.91	59.84	149.57	142.45	173.31
$\tilde{\chi}_2^0$	263.64	160.37	218.60	113.48	287.97	273.95	325.39
$\tilde{\chi}_3^0$	466.44	179.76	463.99	308.94	477.23	463.55	520.62
$\tilde{\chi}_4^0$	483.30	294.90	480.59	327.76	492.23	479.01	536.89
$\tilde{\chi}_1^+$	262.06	149.42	218.33	113.22	288.29	274.30	326.00
$\tilde{\chi}_2^+$	483.62	286.81	480.16	326.59	492.42	479.22	536.81
h^0	115.81	119.01	114.83	113.98	116.85	116.69	114.45
H^0	515.99	3529.74	512.86	370.47	388.92	430.49	632.77
A^0	512.39	3506.62	511.53	368.18	386.47	427.74	628.60
H^+	521.90	3530.61	518.15	378.90	401.15	440.23	638.88
t	175.00	175.00	175.00	175.00	175.00	175.00	175.00