Imperial College
 London

Inclusive high Q^{2} cross sections and QCD and EW fits at HERA

Alex Tapper

34 ${ }^{\text {th }}$ International Conference on High Energy Physics, July 29 - August 5, 2008, Philadelphia, U.S.A.

The HERA accelerator

ICHEP '08, July 29 - August 5, 2008, Philadelphia.

Longitudinal polarisation at HERA

Longitudinal polarisation of the lepton beam at HERA

- Transverse polarisation builds up naturally through synchrotron radiation (Sokolov-Ternov effect)
- Spin rotators flip transverse polarisation to longitudinal before interaction regions and back afterwards
- Polarisation measured by two independent Compton polarimeters
- Average polarisation 30-40\%

The H1 and ZEUS detectors

(1ii)

- LAr calorimeter (45000 cells)
- $\mathrm{EM} \quad \frac{\sigma(E)}{E}=\frac{12 \%}{\sqrt{E}} \oplus 1 \%$
- HAD $\frac{\sigma(E)}{E}=\frac{50 \%}{\sqrt{E}} \oplus 1 \%$

- DU calorimeter (6000 cells)
- $\mathrm{EM} \frac{\sigma(E)}{E}=\frac{18 \%}{\sqrt{E}}$
- $\operatorname{HAD} \frac{\sigma(E)}{E}=\frac{35 \%}{\sqrt{E}}$

Deep inelastic scattering at HERA

Two deep inelastic scattering processes:

Q^{2} is the probing power x is the Bjorken scaling variable y is the inelasticity
— Neutral current: exchange of γ or Z^{0}

- Charged current: exchange of $\mathrm{W}^{ \pm}$

$$
\begin{aligned}
& Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2} \\
& x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k}
\end{aligned}
$$

$$
s=(p+k)^{2} \quad Q^{2}=x \cdot y \cdot s
$$

Neutral current DIS cross section

$$
\begin{gathered}
\frac{d^{2} \sigma^{N C}\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}} Y_{+}\left[F_{2}-\frac{y^{2}}{Y_{+}} F_{L} \mp \frac{Y_{-}}{Y_{+}} x F_{3}\right] \quad Y_{ \pm}=1 \pm(1-y)^{2} . \uparrow \\
\text { Dominant contribution } \\
\text { Sizeable only at highy }
\end{gathered}
$$

Contribution only important at high Q^{2}

$$
\begin{aligned}
& F_{2}=F_{2}^{e m}+\frac{Q^{2}}{Q^{2}+M_{Z}^{2}} F_{2}^{\gamma Z}+\left[\frac{Q^{2}}{Q^{2}+M_{Z}^{2}}\right]^{2} F_{2}^{Z} \propto \sum_{q=u \ldots b}(q+\bar{q}) \\
& x F_{3}=\quad \frac{Q^{2}}{Q^{2}+M_{Z}^{2}} x F_{3}^{\gamma Z}+\left[\frac{Q^{2}}{Q^{2}+M_{Z}^{2}}\right]^{2} x F_{3}^{Z} \propto \sum_{q=u \ldots b}(q-\bar{q})
\end{aligned}
$$

Neutral current data

ZEUS

- At lower $Q^{2} e^{+} p$ and e^{-p} cross sections the same
- F_{2} (photon exchange) dominates cross section
- Directly sensitive to sum of quarks and antiquarks
- At high $Q^{2} e^{+} p$ and e^{-p} cross sections different
- Influence of $x F_{3}$ term (Z^{0} exchange)
- Sensitive to the valence quarks

Charged current DIS at HERA

CC $e^{+} p$ cross section:

$$
\frac{d^{2} \sigma^{C C}\left(e^{+} p\right)}{d x d Q^{2}}=\frac{G_{F}^{2}}{2 \pi}\left(\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right)^{2}[\underbrace{\bar{u}+\bar{c}+(1-y)^{2}(d+s)}_{\tilde{\sigma}\left(x, Q^{2}\right) / x}]
$$

$$
\frac{d^{2} \sigma^{C C}\left(e^{-} p\right)}{d x d Q^{2}}=\frac{G_{F}^{2}}{2 \pi}\left(\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right)^{2}\left[u+c+(1-y)^{2}(\bar{d}+\bar{s})\right]
$$

Sensitive to density of u quark

Electron/positron-proton collisions probe different quark content of proton

Charged current data

ZEUS

- Charged current cross sections quark-flavour specific
- e-p (shown here) sensitive to u-quark
- $e^{+} p$ sensitive to d-quark

ICHEP '08, July 29 - August 5, 2008, Philadelphia.

Polarised charged current DIS

- Polarisation is asymmetry of helicity states

$$
P_{e}=\frac{N_{R}-N_{L}}{N_{R}+N_{L}}
$$

- Helicity = chirality (neglecting masses)
- Can use polarised beams to directly test chiral structure of the Standard Model
- Standard Model weak interaction left-handed
- only LH particles (RH anti-particles) interact

CC cross section modified by P_{e} :

$$
\sigma_{C C}^{e^{ \pm} p}\left(P_{e}\right)=\left(1 \pm P_{e}\right) \cdot \sigma_{C C}^{e^{ \pm} p}\left(P_{e}=0\right)
$$

Polarisation scales $P_{e}=0$ cross section linearly - clear and large effect at HERA

$$
\text { Standard Model predicts zero cross section for } \mathrm{P}_{\mathrm{e}}=+1(-1) \text { in } \mathrm{e}^{-(+)} \text {p scattering }
$$

Dependence on P_{e}

ZEUS

ZEUS

- Clearly demonstrate linear dependence on P_{e}
- Consistent with Standard Model predictions

Polarised NC DIS cross sections

NC cross section modified by P:

$$
\begin{gathered}
\frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[H_{0}^{ \pm}+P H_{P}^{ \pm}\right] \quad P=\frac{N_{R}-N_{L}}{N_{R}+N_{L}} \\
\quad \text { Unpolarised contribution }
\end{gathered}
$$

Polarised contribution - only includes Z and γZ terms

$$
P_{Z}=\frac{1}{\sin ^{2} \theta_{W}} \frac{Q^{2}}{Q^{2}+M_{Z}^{2}}
$$

$$
\begin{aligned}
& x F_{3}=\sum_{q=u \ldots b}\left(-2 e_{q} a_{q} a_{e} P_{Z}+i_{1}^{-} 4 a_{q} v_{q} v_{e} a_{e} P_{Z_{1}^{\prime}}^{2 \boldsymbol{1}}\right) \cdot x(q-\bar{q})
\end{aligned}
$$

Polarised NC DIS cross sections

NC cross section modified by P:

$$
\begin{aligned}
& \frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[H_{0}^{ \pm}+P H_{P}^{ \pm}\right] \quad P=\frac{N_{R}-N_{L}}{N_{R}+N_{L}} \\
& \quad \text { Unpolarised contribution }
\end{aligned}
$$

Polarised contribution - only includes Z and γZ terms

$$
\begin{aligned}
& F_{2}^{P}=\sum_{q=u \ldots b}\left(2 e_{q} a_{e} v_{q} P_{Z}-12 a_{e} v_{e}\left(v_{q}^{2}+a_{q}^{2}\right) P_{Z}^{2 \prime}\right) \cdot x(q+\bar{q})
\end{aligned}
$$

$$
\begin{aligned}
& P_{Z}=\frac{1}{\sin ^{2} \theta_{W}} \frac{Q^{2}}{Q^{2}+M_{Z}^{2}}
\end{aligned}
$$

Polarised NC DIS cross sections

NC cross section modified by P:

$$
\begin{gathered}
\frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[\underset{\uparrow}{H_{0}^{ \pm}}+P H_{P}^{ \pm}\right] \quad P=\frac{N_{R}-N_{L}}{N_{R}+N_{L}} \\
\quad \text { Unpolarised contribution }
\end{gathered}
$$

Polarised contribution - only includes Z and γZ terms

First see if we can observe subtle polarisation dependence!
Then remember that $\mathrm{P}_{\mathrm{z}} \gg \mathrm{P}_{\mathrm{z}}$ and $\mathrm{v}_{\mathrm{e}} \sim 0.04$
\rightarrow Axial couplings from H_{0}
\rightarrow Vector couplings from H_{p}
\rightarrow u-quark should have best precision (coupling to charge)

Polarised NC measurements

ZEUS

High precision measurements
\rightarrow polarisation effect observed

Polarised NC measurements

Form the polarisation asymmetry:

$$
A^{ \pm}=\frac{2}{P_{R}-P_{L}} \frac{\sigma^{ \pm}\left(P_{R}\right)-\sigma^{ \pm}\left(P_{L}\right)}{\sigma^{ \pm}\left(P_{R}\right)+\sigma^{ \pm}\left(P_{L}\right)}
$$

to a good approximation

$$
A^{ \pm} \approx \mp k a_{e} \frac{F_{2}^{\prime Z}}{F_{2}} \quad k=\frac{1}{4 \sin ^{2} \theta_{\|} \theta_{0} \cos ^{2} \theta_{W}} \frac{Q^{2}}{Q^{2}+M_{2}^{2}}
$$

which is quite insensitive to the PDFs and proportional to $\mathrm{a}_{\mathrm{e}} \mathrm{v}_{\mathrm{q}}$ and therefore a direct measure of parity violation

ZEUS

Combined QCD \& EW fit

- Simultaneously fit the data for the PDFs and electroweak parameters (Phys. Lett. B 632,35 (2006))
- QCD fits for PDFs well known

- H1 follows Eur. Phys. J C30 1, (2003).
- ZEUS follows Eur. Phys. J C42 1, (2005).
- See talk of Burkard Reisert
- In both cases fits are to H1/ZEUS data only
- For electroweak parameters, exploit the high precision data with logitudinally polarised beams to extract light-quark axial and vector couplings to the Z^{0} boson $-a_{u}, a_{d}, v_{u}$ and v_{d}.

Combined QCD \& EW fit

More sensitive to u-quark

Combined QCD \& EW fit

ZEUS

ZEUS

HERA measurements competitive with LEP and Tevatron Phys. Rep. 427, 257 (2006) \& Phys. Rev. D71, 052002 (2005)

Summary

- High-precision high-Q² measurements
- Simultaneous determinations of the PDFs and EW parameters
- Couplings of u and d quarks to Z^{0} competitive with determinations from LEP and Tevatron experiments
- Can expect improvements in precision with full data sets
- Need to combine H1 and ZEUS data
- More still to come from HERA!

Backup slides

Electroweak fit

- Fix $\mathrm{G}_{\mathrm{F}}, \mathrm{M}_{w}$ in CC cross sections to PDG
- Fix a, M_{z} and M_{w} in NC cross sections to PDG
- $\mathrm{v}_{\mathrm{q}}=\mathrm{I}^{3}{ }_{\mathrm{q}, \mathrm{L}}-2 \mathrm{e}_{\mathrm{q}} \sin ^{2} \theta_{\mathrm{w}} \quad \mathrm{a}_{\mathrm{q}}=\mathrm{I}^{3}{ }_{\mathrm{q}, \mathrm{L}}$
- Weak radiative corrs modify the couplings to dressed couplings
- Form factors $\rho_{\text {eq }}, K_{e}, K_{q}, K_{e q}$
- $\rho_{\text {eq }}=1$ assumed (good up to $\mathrm{Q}^{2}<10000 \mathrm{GeV}^{2}$)
- $\sin ^{2} \theta_{w}=K_{q}\left(1-M w^{2} / M z^{2}\right)$

Electroweak fit

ZEUS (prel.) result (H1 numbers not available)

	a_{u}	a_{d}	v_{u}	v_{d}
ZEUS	$0.51 \pm 0.10 \pm 0.17$	$-0.54 \pm 0.32 \pm 0.18$	$0.05 \pm 0.09 \pm 0.05$	$-0.64 \pm 0.20 \pm 0.14$
SM	0.5	-0.5	0.196	-0.346

H1 PDF 2000 fit

- PDFs fitted
- U, D, Ubar, Dbar and g
- Form
$-x q(x)=A_{q} x^{B q}(1-x)^{C q}\left(1+D_{g} x+F_{q} x^{3}\right)$
- Starting scale $\mathrm{Q}_{0}{ }^{2}=4 \mathrm{GeV}$
- 10 free parameters for PDFs
- Data sets: NC and CC $e^{+} p$ and e^{-p} DIS

ZEUS-JETS fit

- PDFs fitted
- u and d valence, sea, gluon, $u_{\text {sea }}-\mathrm{d}_{\text {sea }}$
- Form
$-x q(x)=p_{1} x^{p 2}(1-x)^{p 3}\left(1+p_{4} x\right)$
- Starting scale $\mathrm{Q}_{0}{ }^{2}=7 \mathrm{GeV}$
- 11 free parameters for PDFs
- Data sets: NC and CC e ${ }^{+} p$ and $e^{-} p$ DIS, inclusive jets in NC DIS and үp dijets

