

Inclusive high Q² cross sections and QCD and EW fits at HERA

Alex Tapper

34th International Conference on High Energy Physics, July 29 - August 5, 2008, Philadelphia, U.S.A.

The HERA accelerator

ICHEP '08, July 29 - August 5, 2008, Philadelphia.

Longitudinal polarisation at HERA

- Transverse polarisation builds up naturally through synchrotron radiation (Sokolov-Ternov effect)
- Spin rotators flip transverse polarisation to longitudinal before interaction regions and back afterwards
- Polarisation measured by two independent Compton polarimeters
- Average polarisation 30-40%

The H1 and ZEUS detectors

• LAr calorimeter (45000 cells)

• EM
$$\frac{\sigma(E)}{E} = \frac{12\%}{\sqrt{E}} \oplus 1\%$$

• HAD
$$\frac{\sigma(E)}{E} = \frac{50\%}{\sqrt{E}} \oplus 1\%$$

• EM
$$\frac{\sigma(E)}{E} = \frac{18\%}{\sqrt{E}}$$

• HAD
$$\frac{\sigma(E)}{E} = \frac{35\%}{\sqrt{E}}$$

Deep inelastic scattering at HERA

Q² is the probing power x is the Bjorken scaling variable y is the inelasticity

Two deep inelastic scattering processes:

— Neutral current: exchange of γ or Z^0

— Charged current: exchange of W^{\pm}

$$Q^{2} = -q^{2} = -(k - k')^{2}$$
$$x = \frac{Q^{2}}{2p \cdot q} \quad y = \frac{p \cdot q}{p \cdot k}$$
$$s = (p + k)^{2} \quad Q^{2} = x \cdot y \cdot s$$

Neutral current DIS cross section

$$\frac{d^{2}\sigma^{NC}(e^{\pm}p)}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}}Y_{+}\left[F_{2}-\frac{y^{2}}{Y_{+}}F_{L}\mp\frac{Y_{-}}{Y_{+}}xF_{3}\right] \qquad Y_{\pm}=1\pm(1-y)^{2}$$
Dominant contribution
Sizeable only at high y

Contribution only important at high Q^2

$$\begin{split} F_{2} &= F_{2}^{em} + \frac{Q^{2}}{Q^{2} + M_{Z}^{2}} F_{2}^{\gamma Z} + \left[\frac{Q^{2}}{Q^{2} + M_{Z}^{2}}\right]^{2} F_{2}^{Z} \propto \sum_{q=u...b} (q + \overline{q}) \\ xF_{3} &= \frac{Q^{2}}{Q^{2} + M_{Z}^{2}} xF_{3}^{\gamma Z} + \left[\frac{Q^{2}}{Q^{2} + M_{Z}^{2}}\right]^{2} xF_{3}^{Z} \propto \sum_{q=u...b} (q - \overline{q}) \end{split}$$

ICHEP '08, July 29 - August 5, 2008, Philadelphia.

Neutral current data

- At lower Q² e⁺p and e⁻p cross sections the same
- F₂ (photon exchange) dominates cross section
- Directly sensitive to sum of quarks and antiquarks
- At high Q² e⁺p and e⁻p cross sections different
- Influence of xF₃ term (Z⁰ exchange)
- Sensitive to the valence quarks

Charged current DIS at HERA

CC e⁺p cross section:

Sensitive to density of d quark

$$\frac{d^2 \sigma^{CC} (e^+ p)}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[\overline{u} + \overline{c} + (1 - y)^2 (d + s) \right]$$
CC erp cross section:

$$\frac{d^2 \sigma^{CC} (e^- p)}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[u + c + (1 - y)^2 (\overline{d} + \overline{s}) \right]$$
Sensitive to density of u quark

Electron/positron-proton collisions probe different quark content of proton

Charged current data

ZEUS

- Charged current cross sections quark-flavour specific
- e⁻p (shown here) sensitive to u-quark
- e⁺p sensitive to d-quark

Polarised charged current DIS

- Polarisation is asymmetry of helicity states
- Helicity = chirality (neglecting masses)
- Can use polarised beams to directly test chiral structure of the Standard Model
- Standard Model weak interaction left-handed
 - only LH particles (RH anti-particles) interact

$$\sigma_{CC}^{e^{\pm}p}(P_e) = (1 \pm P_e) \cdot \sigma_{CC}^{e^{\pm}p}(P_e = 0)$$

Polarisation scales $P_e=0$ cross section linearly - clear and large effect at HERA

Standard Model predicts zero cross section for $P_e = +1(-1)$ in $e^{-(+)}p$ scattering

$$P_e = \frac{N_R - N_L}{N_R + N_L}$$

$$\begin{array}{c} \mathbf{e}_{\mathrm{L}} \\ \mathbf{e}_{\mathrm{R}} \\ \mathbf{W} \end{array} \qquad \mathbf{e}_{\mathrm{R}} \\ \mathbf{W} \\ \mathbf{W} \end{array}$$

Dependence on P_e

- Clearly demonstrate linear dependence on P_e
- Consistent with Standard Model predictions

Polarised NC DIS cross sections

NC cross section modified by P:

$$\frac{d^2\sigma(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[H_0^{\pm} + PH_P^{\pm} \right] \quad P = \frac{N_R - N_L}{N_R + N_L}$$

Unpolarised contribution

Polarised contribution - only includes Z and γZ terms

$$F_{2} = \sum_{q=u...b} \left(e_{q}^{2} - 2e_{q}v_{q}v_{e}P_{Z} + (v_{e}^{2} + a_{e}^{2})(v_{q}^{2} + a_{q}^{2})P_{Z}^{2} \right) \cdot x(q + \bar{q})$$

$$xF_{3} = \sum_{q=u...b} \left(-2e_{q}a_{q}a_{e}P_{Z} + 4a_{q}v_{q}v_{e}a_{e}P_{Z}^{2} \right) \cdot x(q - \bar{q})$$

$$P_{Z} = \frac{1}{\sin^{2}\theta_{W}} \frac{Q^{2}}{Q^{2} + M_{Z}^{2}}$$

Polarised NC DIS cross sections

NC cross section modified by P:

$$\frac{d^2\sigma(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[H_0^{\pm} + PH_P^{\pm} \right] \quad P = \frac{N_R - N_L}{N_R + N_L}$$

Unpolarised contribution

Polarised contribution - only includes Z and γZ terms

$$F_{2}^{P} = \sum_{q=u...b} \left(2e_{q}a_{e}v_{q}P_{Z} - 2a_{e}v_{e}(v_{q}^{2} + a_{q}^{2})P_{Z}^{2} \right) \cdot x(q + \overline{q})$$

$$xF_{3}^{P} = \sum_{q=u...b} \left(2e_{q}a_{q}^{\dagger}v_{e}P_{Z} - 2a_{q}v_{q}(v_{e}^{2} + a_{e}^{2})P_{Z}^{2} \right) \cdot x(q - \overline{q})$$

$$P_{Z} = \frac{1}{\sin^{2}\theta_{W}} \frac{Q^{2}}{Q^{2} + M_{Z}^{2}}$$

Polarised NC DIS cross sections

NC cross section modified by P:

$$\frac{d^2\sigma(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[H_0^{\pm} + PH_P^{\pm} \right] \quad P = \frac{N_R - N_L}{N_R + N_L}$$

Unpolarised contribution

Polarised contribution - only includes Z and γZ terms

First see if we can observe subtle polarisation dependence!

Then remember that $P_z >> P_z^2$ and $v_e \sim 0.04$

- \rightarrow Axial couplings from H₀
- \rightarrow Vector couplings from H_P
- → u-quark should have best precision (coupling to charge)

Polarised NC measurements

→ polarisation effect observed

ICHEP '08, July 29 - August 5, 2008, Philadelphia.

Polarised NC measurements

Form the polarisation asymmetry:

$$A^{\pm} = \frac{2}{P_R - P_L} \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)}$$

to a good approximation

$$A^{\pm} \approx \mp ka_e \frac{F_2^{\gamma Z}}{F_2} \qquad k = \frac{1}{4\sin^2\theta_W \cos^2\theta_W} \frac{Q^2}{Q^2 + M_Z^2}$$

which is quite insensitive to the PDFs and proportional to $a_e v_q$ and therefore a direct measure of parity violation

Combined QCD & EW fit

- Simultaneously fit the data for the PDFs and electroweak
 parameters (Phys. Lett. B 632, 35 (2006))
- QCD fits for PDFs well known
 - H1 follows Eur. Phys. J C30 1, (2003).
 - ZEUS follows Eur. Phys. J C42 1, (2005).
 - See talk of Burkard Reisert
- In both cases fits are to H1/ZEUS data only
- For electroweak parameters, exploit the high precision data with logitudinally polarised beams to extract light-quark axial and vector couplings to the Z⁰ boson - a_u, a_d, v_u and v_d.

Combined QCD & EW fit

More sensitive to u-quark

Combined QCD & EW fit

HERA measurements competitive with LEP and Tevatron Phys. Rep. 427, 257 (2006) & Phys. Rev. D71, 052002 (2005)

Summary

- High-precision high-Q² measurements
- Simultaneous determinations of the PDFs and EW parameters
- Couplings of u and d quarks to Z⁰ competitive with determinations from LEP and Tevatron experiments
- Can expect improvements in precision with full data sets
- Need to combine H1 and ZEUS data

• More still to come from HERA!

Backup slides

Electroweak fit

- Fix G_F , M_W in CC cross sections to PDG
- Fix a, M_z and M_w in NC cross sections to PDG
- $v_q = I_{q,L}^3 2e_q sin^2 \theta_W a_q = I_{q,L}^3$
- Weak radiative corrs modify the couplings to dressed couplings
- Form factors ρ_{eq}, κ_e, κ_q, κ_{eq}
- $\rho_{eq}=1$ assumed (good up to Q²<10 000 GeV²)
- $\sin^2\theta_W = \kappa_q(1-M_W^2/M_Z^2)$

Electroweak fit

ZEUS (prel.) result (H1 numbers not available)

	a _u	a _d	Vu	Vd
ZEUS	$0.51 \pm 0.10 \pm 0.17$	-0.54±0.32±0.18	$0.05 \pm 0.09 \pm 0.05$	-0.64±0.20±0.14
SM	0.5	-0.5	0.196	-0.346

H1 PDF 2000 fit

- PDFs fitted
 - U, D, Ubar, Dbar and g
- Form

 $- xq(x) = A_q x^{Bq} (1-x)^{Cq} (1+D_g x+F_q x^3)$

- Starting scale $Q_0^2 = 4$ GeV
- 10 free parameters for PDFs
- Data sets: NC and CC e⁺p and e⁻p DIS

ZEUS-JETS fit

- PDFs fitted
 - u and d valence, sea, gluon, u_{sea}-d_{sea}
- Form
 - $xq(x) = p_1 x^{p_2} (1-x)^{p_3} (1+p_4x)$
- Starting scale $Q_0^2 = 7 \text{ GeV}$
- 11 free parameters for PDFs
- Data sets: NC and CC e⁺p and e⁻p DIS, inclusive jets in NC DIS and γp dijets