

The CMS Level-1 Trigger for LHC Run II

Alex Tapper for the CMS collaboration

Imperial College London

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

- Introduction and challenges
- System overview and commissioning
- Algorithms and performance results
 - Muon track finders
 - e/γ finder
 - τ finder
 - Jet finder and energy sums
- Summary and outlook

Introduction and challenges

- energy, and by the higher PU (especially hadronic objects)
- CMS detector electronics are limited to a L1 trigger rate of 100 kHz
- Maintain sensitivity for electroweak scale physics and for TeV scale searches as in Run I

- Interesting processes many orders of magnitude low cross sections than total pp
- Select interesting events without dead time
- Implemented as a two level system in CMS \rightarrow

System concept

- Key conceptual changes
- Muon system use redundancy of three muon detector systems early to make a high resolution muon trigger
- Calorimeter system remove boundaries by streaming data from single event into one FPGA
- Global trigger expandable to many more possible conditions and more sophisticated quantities, to give a richer menu á la Higher Level Trigger
- **Replaced EVERYTHING!**

ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A.

All hardware, all software, databases... even the timing control system and DAQ interface...

- Key technology changes
 - VME $\rightarrow \mu$ TCA (modern telecoms standard)
 - System wide use of latest FPGAs \rightarrow Xilinx Virtex® 7
 - Parallel copper links \rightarrow serial optical links
 - Link speeds 1 Gb/s \rightarrow 10 Gb/s
 - Large optical patch panels \rightarrow custom made commercial solution (Molex Flexplane[™])
 - Online software rewritten \rightarrow more common code, modern libraries, more easily maintained
- Aim for flexible, maintainable system
- Adapt to evolving CMS physics programme
- ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A. 5

Commissioning overview

- Commissioned in parallel
 - Calorimeter inputs duplicated (in FPGAs and optically)
 - Muon inputs duplicated (endcap) and slice commissioned (barrel)
 - Run parasitically with CMS data taking (not triggering!)
- Steps to completion
- Interconnection tests 2012-2014
- MC pattern test campaign in 2015 √
- Data taken in CMS global running in 2015
 - Over 7 billion events in pp
- Cosmic runs and beam splashes in 2016
- ► First collisions in 2016... ✓
- ► Started physics run in 2016 ✓

6 ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A.

and optically) e commissioned (barrel) ot triggering!)

Examples of pattern tests with simulated events

Muon track finder algorithms

- Muon track finding
 - Segment into Barrel, Overlap, and Endcap regional processors
 - Complementary detector strengths e.g. RPC timing
 - Improve robustness in the case of dead channels/ chambers and cracks
 - Pattern based track finding in endcap and overlap (with separate MVA LUT p_T assignment in endcap)
 - Road search extrapolation track finding in barrel
 - Global muon trigger takes muon tracks from regional finders, sorts by p_T and quality and cancels duplicates
 - Input from calorimeter trigger to apply isolation to muon candidates
- ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A.

BMTF |n| < 0.83 OMTF 0.83 < $|\eta| < 1.24$ **EMTF** $|\eta| > 1.24$

Muon trigger performance results

e/y finder algorithm

Dynamic clustering

Improved energy containment Showing electrons, photon conversions Minimise effect of pile-up Improved energy resolution

Cluster shape veto

Discriminate using cluster shape and EM energy fraction between e/γ and jets

Calibration

 e/γ cluster energy calibrated as fn. of E_T , η and cluster shape

Energy weighted position

Potential use in correlating objects e.g. invariant mass

Φ

jet like

e/γ like

Energy comparison to offline

Position comparisons to offline

e/γ trigger performance results

- Trigger efficiency for a single e/γ with $E_T > 40$ GeV vs offline E_T
- Using tag and probe method on a dataset of $Z \rightarrow ee$ events

Isolation

Create isolation annuli (removing footprint) for ECAL and HCAL around cluster

Isolation energy requirement fn. of PU and n

τ finder algorithm

Clustering, shape and position

Very similar to e/γ — optimised for τ

Merging

Merge neighbouring clusters (~15% of clusters) Recover multi-prong t decays

Calibration

 τ cluster energy calibrated as fn. of E_T, η , merging and EM fraction

Isolation

Very similar to e/γ — optimised for τ including merging as input — two working points

11 ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A.

Position comparisons to offline

τ trigger performance results

CM

- Trigger efficiency for a single τ with $E_T > 28$, 30 and 32 GeV vs offline τp_T
- Using tag and probe method on a dataset of $Z \longrightarrow \mu \tau$ events

12 ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A.

28, 30 and 32 GeV vs offline τp_T t of Z—) $\mu \tau$ events

Jet finder algorithm

Input granularity

Access to higher granularity inputs than Run I

Sliding window jet algorithm

Search for seed energy above threshold Apply veto mask to remove duplicates Sum 9x9 trigger towers to approximate R=0.4 used offline

Pile-up subtraction

Consider four areas around jet window Subtract sum of energy in lowest three from jet energy

Calibration

Correct jet energies as a function of jet E_T and η

13 ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A.

14 (η) x 18 (φ)

56 (η) x 72 (φ)

PUS areas

Jet trigger performance results

- Compare energies and calculate efficiencies as a function of offline jet quantities

- Sharp efficiency turn-on with well calibrated E_T scale
- Insensitive to pile-up

14 ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A.

Match Level-1 Trigger jets to offline (anti- $k_t R = 0.4$) jets using $\Delta R < 0.25$ in single muon data

- Use jets to calculate scalar sum $H_T = \Sigma E_{T_i}$ for $E_{T_i} > 30$ GeV and $|\eta| < 3$ using single muon data Vector sum of trigger towers with $|\eta| < 3$ to form E_T^{miss}

Favourites with SUSY and exotics searches

15 ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A.

Energy sum trigger performance results

Summary and outlook

- Run II at LHC is a very challenging environment to search for new physics and measure the properties of the Higgs boson
 - Increase in instantaneous luminosity, centre-of-mass energy, increase in pileup... Requires improved performance online and offline
- Newly installed Level-1 trigger at CMS tackles these challenges
- State-of-the-art, FPGA based, very high bandwidth processors with sophisticated, programmable algorithms
- First performance results look good flexible to evolve with CMS physics programme
- Study the performance of this new trigger and learn from design and commissioning to begin designing Phase II trigger upgrade for HL-LHC

References

- CMS Level-1 Trigger TDR: <u>https://cds.cern.ch/record/706847</u>
- Run I performance paper: The CMS Trigger System, to be submitted to JINST
- Phase 1 upgrade TDR: <u>https://cds.cern.ch/record/1556311</u>
- Performance notes for ICHEP 2016
 - μ: <u>https://cds.cern.ch/record/2202986</u>
 - e/γ, τ, jets and sums: <u>https://cds.cern.ch/record/2202966</u>
- Earlier notes
 - Commissioning etc.: <u>http://cds.cern.ch/record/2063468</u>
- Area-based pile-up subtraction:
 - https://arxiv.org/abs/0707.1378
 - http://arxiv.org/abs/1010.1759

Backup

. . .

Future prospects

- Potential areas for improvement
 - Topological triggers e.g. M_{ii} , $\Delta \phi_{i,MET}$... being proposed now
 - Use of RPC data in barrel μ track finding now, forward μ coming...
 - Upgrade to HCAL provides depth and timing information, incorporate into trigger to mitigate in and out-of-time pileup
 - Use of cluster shape as veto/catagorisation/calibration in τ and jets (already in e/ γ)

L1 menu for 10^{34} cm⁻² s⁻¹

20 ICHEP2016: The 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, U.S.A.

Bandwidth allocated per trigger object type

Note that fractions are inclusive \rightarrow no attempt to correct for overlaps between different types of trigger

LHC: Future plans

CMS

Peak luminosity -²S⁻¹] 6.0E+34 Run 2 Run 1 Run 3 CC 5.0E+34 <PU> <PU> <**PU**> 20-40 40 60 uminosity 4.0E+34 300 fb⁻¹ **25 fb⁻¹** 0 3.0E+34 Instantaneous 2.0E+34 Design 1.0E+34 Phase 1 upgrades 0.0E+00

Year

Time-multiplexed calorimeter trigger

CN

T reconstruction performance

CN

Jet algorithm performance

PUS areas

Jet reconstruction performance

MET reconstruction performance

- Trigger efficiency for individual muon triggers was lower in overlap region
- Only improved when combined by GMT
- Rate was higher in the overlap region (twice barrel rate per unit rapidity)

Legacy performance in overlap region

2 stations

- For DT barrel trigger, 90% of the rate for $p_T > 15$ GeV comes from tracks with only two station hits
- For CSC endcap trigger, majority of rate also comes from tracks with only two station hits. But 2/3 of such 2 station tracks have an RPC hit in another station
- p_T assignment algorithms, and resolution, are better with more track hits

