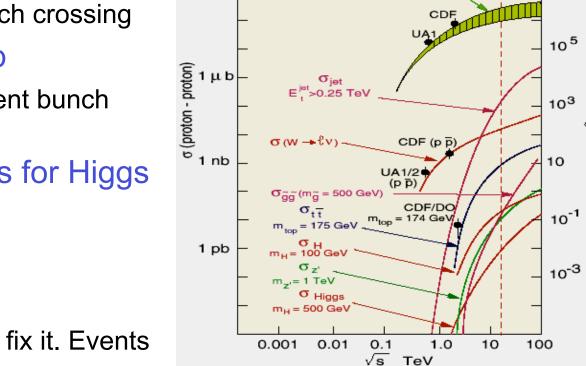


Commissioning and performance of the CMS Global Calorimeter Trigger

<u>A. Tapper</u>, J. Brooke, C. Foudas, R. Frazier, M. Hansen, G. Heath, G. Iles, J. Marrouche, A. Rose, G. Sidiropoulos & M. Stettler

- Trigger challenges and the CMS L1 Trigger
- The Global Calorimeter Trigger
- Status of commissioning and performance


1 IEEE Nuclear Science Symposium, October 19th - 25th, 2008, Dresden, Germany.

Trigger challenges at the LHC

1 mb

- Enormous data rate: 10⁹ Hz
 - More than 1TByte/s
- Minimum bias in-time pile-up
 - 22 events per bunch crossing
- Out-of-time pile-up
 - Events from different bunch crossings overlaid
- Tiny cross sections for Higgs and new physics
 - Selection 1:10¹¹
- All online
 - Can't go back and fix it. Events are lost forever!

Fermilab

E710

CERN

UA4/5

 $\sigma_{b \bar{b}}$

 σ_{tot}

SSC

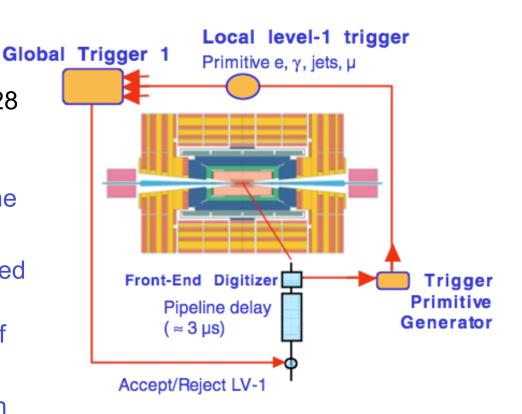
 10^{9}

107

10³⁴ cm⁻

Events / s for &

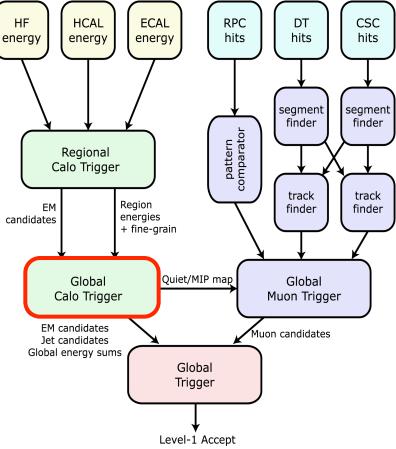
Imperial College


ondon

The CMS Level 1 Trigger

- Pipelines deep enough for 128 bunch crossings (3.2µs)
- Trigger decision derived from trigger primitives generated on the detector
- Trigger systems search for isolated e, γ, μ, jets and compute the transverse and missing energy of the event
- Event selection algorithms run on the global triggers
 - Must give a trigger decision every 25ns.

3 IEEE Nuclear Science Symposium, October 19th - 25th, 2008, Dresden, Germany.


4

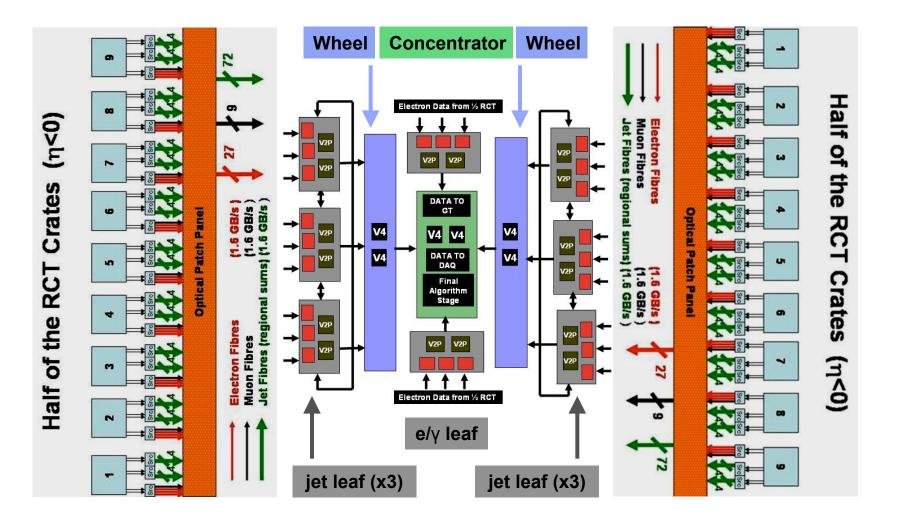
The CMS Level-1 Trigger

Muons

- Three complementary detector systems
- Share hits when available in overlap regions
- Find best combination of information in Global Muon Trigger
- Electrons, jets, energy sums etc.
 - Combine ECAL and HCAL energies in Regional Calo Trigger and do local electron finding
 - Global energy sums and jets in the Global Calo Trigger \rightarrow
- All objects contribute to L1 accept

london

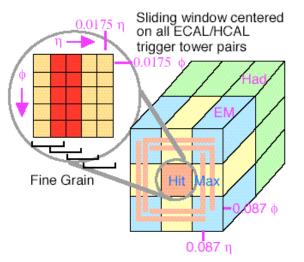
The Global Calorimeter Trigger


- Jet Triggers:
 - Central, Tau and Forward jet finding and sorting.
- Electron/γ triggers:
 - Select and sort the e/γ candidates from the Regional Calorimeter Trigger
- Energy sums:
 - Total Transverse (E_T), Missing Transverse (ME_T) and Total Jet Transverse Energy (H_T) calculation
- Min bias:
 - Sum rings and count towers above threshold in forward calorimeters to form minbias trigger

• Other tasks:

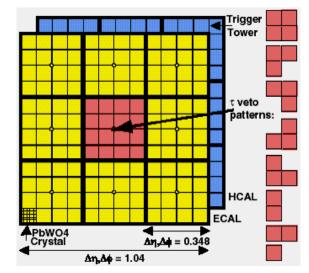
- Receive the muon data and send them to the Global Muon Trigger (separate system based on µTCA hardware)
- Readout all the RCT and GCT data for every L1 accept
- 5 IEEE Nuclear Science Symposium, October 19th 25th, 2008, Dresden, Germany.

The Global Calorimeter Trigger



6 IEEE Nuclear Science Symposium, October 19th - 25th, 2008, Dresden, Germany.

L1 trigger algorithms


Electron/photon finder

Electron (Hit Tower + Max)

- 2-tower ΣE_T + Hit tower H/E
- Hit tower 2x5-crystal strips >90% E_T in 5x5 (Fine Grain)
- Isolated Electron (3x3 Tower)
 - Quiet neighbours: all towers pass Fine Grain and H/E
 - One group of 5 EM E_T < threshold

Jet Finder

- Jet ET
 - 12x12 trigger tower ΣE_T sliding in 4x4 steps
 - Central 4x4 E_T > others
- Tau jet
 - Isolated narrow energy deposit
 - Energy outside veto pattern sets veto
 - Jet is tau if all nine 4x4 region vetoes off

Imperial College

Londor

Status and commissioning

Three stages of commissioning planned:

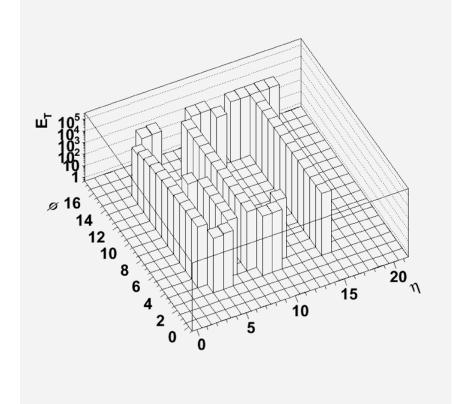
• Pattern tests

- Simple patterns to verify cabling map
- Full Monte Carlo simulated events loaded into hardware. Compare to what is expected by software (C++) emulator.

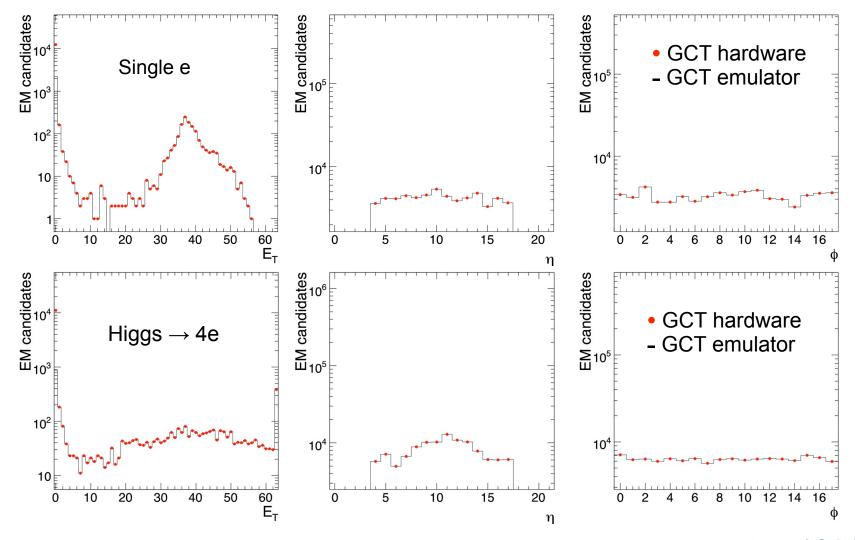
• Cosmic tests

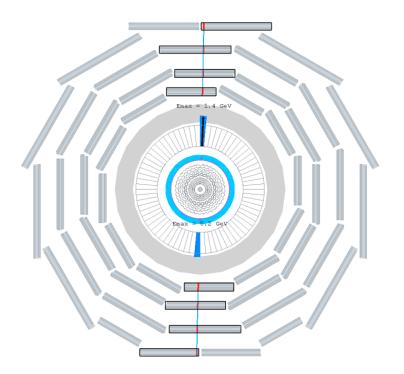
- Run with cosmic-ray muons triggered by muon system or calorimeters
- Compare to what is expected by emulator (comparison run online in DQM stream)

• First running


- Single beam (beam gas and beam halo) events
- First collision data!
- 8 IEEE Nuclear Science Symposium, October 19th 25th, 2008, Dresden, Germany.

Pattern tests


- Comprehensive suite of test patterns, from simple to complex
 - For cabling an ID pattern
 - Random numbers, walking ones etc. for hardware corruption
 - For geometry various patterns with single towers of energy, building up to a fun example →
 - For algorithms groups of energy to test clustering, special cases at boundaries etc.
 - Finally full Monte Carlo events → next page.....

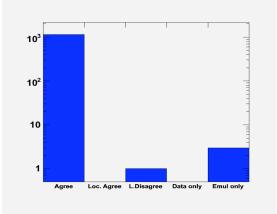

Pattern tests

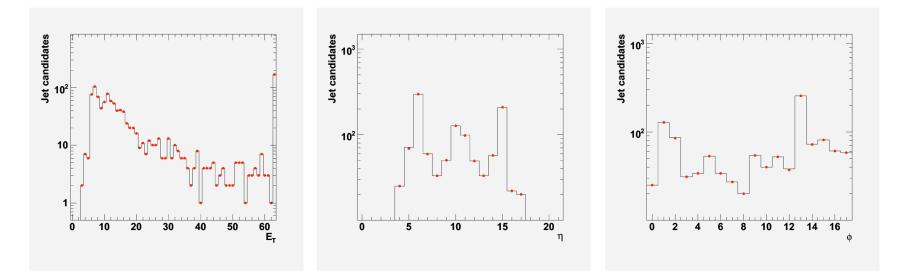
10 IEEE Nuclear Science Symposium, October 19th - 25th, 2008, Dresden, Germany.

CMS

Cosmic muon running

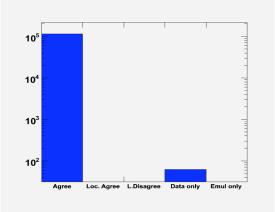
• Trigger on cosmic-ray muons

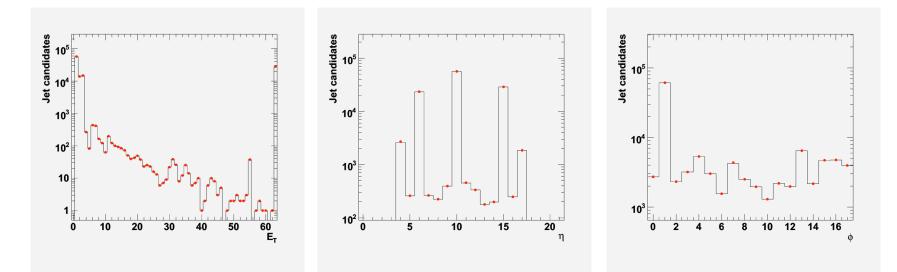

- Muon chambers
- MIP in ECAL or HCAL
- Commissioned electron trigger in November '07
- Working on jet triggers now
- Some examples from a recent run →


11 IEEE Nuclear Science Symposium, October 19th - 25th, 2008, Dresden, Germany.

• Central jets ($|\eta| < 3$)

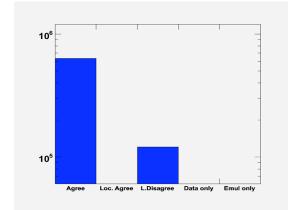
GCT hardware
GCT emulator

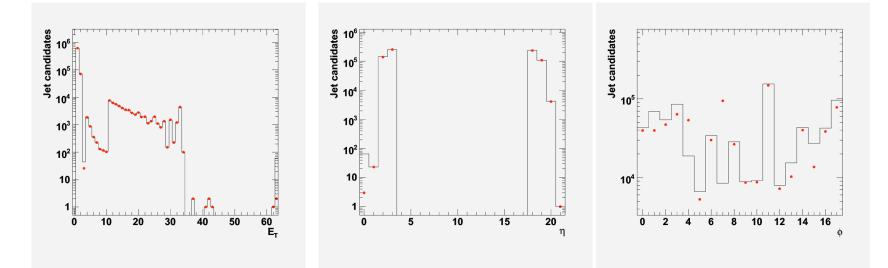



12 IEEE Nuclear Science Symposium, October 19th - 25th, 2008, Dresden, Germany.

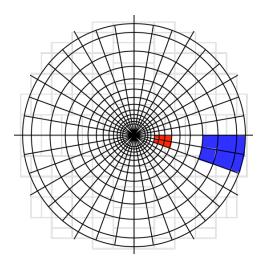
Tau jets (|η| < 3)

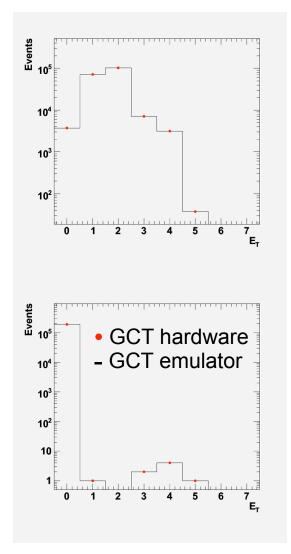
GCT hardware
GCT emulator




13 IEEE Nuclear Science Symposium, October 19th - 25th, 2008, Dresden, Germany.

• Forward jets $(3 < |\eta| < 5)$


GCT hardware
GCT emulator



14 IEEE Nuclear Science Symposium, October 19th - 25th, 2008, Dresden, Germany.

- New idea for triggering low P_T events in early running
 - Consider inner two rings of trigger towers in the forward calorimeter
 - Make E_T sums and count towers over E threshold
 - Make coincidence in +/- η

Future plans

• Missing E_T , H_T and total E_T implemented

- Need to be fully commissioned with patterns and cosmic data
- That would complete the baseline specification
- Already implemented one new idea along the way, others waiting in the wings
 - Missing E_T from jets \rightarrow Missing H_T (MH_T)
 - Hope is that MH_T will be more robust in the face of noise and bad beam conditions than ME_T and therefore particularly valuable in early running
 - Tau algorithm can be better optimised with more isolation
- Flexible enough to react to new ideas and conditions

16 IEEE Nuclear Science Symposium, October 19th - 25th, 2008, Dresden, Germany.

Summary

- System runs stably and reliably
 - Huge amount of hardware detail omitted
- Electron, jet and minimum bias triggers commissioned
 - Tracking down final <1% bugs</p>
- Missing E_T , H_T and total E_T implemented
 - Currently commissioning with cosmic muon data
- Baseline project almost finished, what we've found
 - Complex system designed and built in a quite short timescale
 - Since the firmware is complicated commissioning by comparison with software emulator has been enormously important
 - Huge flexibility in system allows improvements in algorithms and new ideas to be implemented → a blessing for CMS but a curse for us... already new ideas in the pipeline

Imperial College

Looking forward to data from the LHC!