

System Design and Prototyping for the CMS Level-1 **Trigger at the High-Luminosity LHC**

Alex Tapper for the CMS Collaboration

The Phase-2 Upgrade of the CMS Level-1 Trigger CERN-LHCC-2020-004; CMS-TDR-021 http://cds.cern.ch/record/2714892

Imperial College London

Introduction to High-Luminosity LHC

LHC / HL-LHC Plan

LHC												
Run 1				Run 2				Run 3				
<u>7 TeV 8 TeV</u>	splice c button R2E	LS1 onsolidation collimators project	1 13 TeV 13 TeV 113 TeV 113 TeV		EYETS cryolimit interaction regions		LS2 Diodes Consolidation LIU Installation 11 T dipole coll. Civil Eng. P1-P5		13 - 14 TeV			
2011 2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	202
75% nominal Lumi	experiment beam pipes		nominal Lumi		2 x nor	2 x nominal Lumi		ATLAS - CMS upgrade <i>phase</i> 1 ALICE - LHCb upgrade		radiat dama 2 x nominal Lumi		
30 fb ⁻¹	L EQUIF	MENT:				190 fb ⁻¹						350 fb ⁻¹
DESIGN STUDY			<u>ee</u>	PROTOTYPES					CONSTRUCTION			
LHC PHASE -1												

- Accumulate 3000 4000 fb⁻¹ \rightarrow extend physics reach

Initial LHC design luminously 1×10^{34} cm⁻² s⁻¹ \rightarrow already exceeded by factor 2 in Run 2 High-Luminosity era 5-7.5 x10³⁴ cm⁻² s⁻¹ \rightarrow factor of 5 to 7.5 beyond design specification

Detector challenges

- Number of simultaneous protonproton interactions (pileup)
- Design specification ~20 int/bunch crossing
- HL-LHC 140-200 int/bunch crossing
- Higher pileup \rightarrow higher occupancy, degraded performance (e.g. failure of pattern recognition)

Trigger rates increase with instantaneous luminosity and performance £ degrades with pileup (e.g. isolation)

un period	W → I _V rate
Run1	80 Hz
Run 2	200 Hz
Run 3	400-600 Hz
HL-LHC	1KHz

Current L1 trigger 4 MHz @ HL-LHC

CMS Detector upgrade

- Major upgrade to detector
 - Replacing **tracker**, end-cap calorimetry, additional muon detectors
 - New trigger and DAQ systems

All silicon tracking system with pixels and silicon strips

Over 200 m² of silicon 10⁹ channels ~100 µm strips

Outer strip tracker used in L1 trigger: 6 layers in barrel and 4 disks of sensors

Tracker delivers full tracks to L1 trigger for e.g. finding vertex

- P_T -modules \rightarrow doublet sensors with common electronics to correlate hits and form stubs for trigger
- Distance between sensors give track p_T lower cut

- Factor x10 data reduction \rightarrow control of trigger rates
- FPGA-based track finding @ 40 MHz in 4 µs

CMS Detector upgrade

- Major upgrade to detector
 - Replacing tracker, end-cap calorimetry, additional muon detectors
 - New trigger and DAQ systems

High Granularity Calorimeter with 4D (space-time) shower measurement

Sampling calorimeter: silicon sensors, optimised for high pileup High granularity readout (~1 cm²) and precision timing (<50ps)

300 GeV pions

~600 m² of silicon 6M channels ~100 µm strips

28 electromagnetic layers (14 for L1 trigger)
22 hadronic layers
4 cm² trigger granularity

Delivers 3D clusters to L1 trigger latency 4 µs

Technology R&D examples

ATCA based electronics R&D **Generic high I/O processing boards**

Wide range of testing and prototypes

e.g. extensive link tests @ 28 Gb/s & thermal cycle testing and simulation

APx consortium

- Xilinx Virtex Ultrascale+ (VU9P) FPGA
- Optical links running up to 28 Gb/s
- Xilinx Zync SoC for control (dual core ARM)
- Option for 128 GB memory for LUT applications

Serenity collaboration

- Carrier board with two sites for
- daughter cards
- High density, low profile interposer
- to mount daughter cards with FPGAs
- Optical links running up to 28 Gb/s
- Commercial COM express control with x86 CPU

Provides robust independent triggers for **calorimeter**, muon and tracking systems separately, and a *Particle Flow* trigger, which combines detector information, all feeding into a **global trigger**

Detector inputs

Detector	Object	N hits / object	Nobiosta	N hite / BV	Poquirad BW (C
Detector	Object	IN DIIS/ Object	IN ODJECIS	IN DILS/ DA	Required DW (C
TRK	Track	96	1665	159 840	6 3 9 4
EB	Crystal	16	61 200	979 200	39 168
EB	Clusters	40	50	2 000	80
HB	Tower	16	2 304	36 864	1 475
HF	Tower	10	1 4 4 0	13824	553
HGCAL	Cluster	250	416	104 000	4 1 6 0
HGCAL	Tower	16	2 600	41 600	1 664
MB DT+RPC (SP)	Stub	64	1 720	110 080	4400
ME CSC	Stub	32	1 080	34 560	1 382
ME RPC	Cluster	16	2 304	36864	1 475
ME iRPC	Cluster	24	288	6912	276
ME GEM	Cluster	14	2 304	32 256	1 290
ME0 GEM	Stub	24	288	6912	276
Total	-	-	-	-	62 593

System specification and constituents

Increase bandwidth 100 kHz \rightarrow 750 kHz Increase latency 3.8 μ s \rightarrow 12.5 μ s (9.5 μ s target contingency) Include high-granularity detector and tracker information Dedicated scouting system @ 40 MHz → streaming data

Optical link speeds 16/25 Gb/s as appropriate for application

Use of largest FPGA parts where processing bound e.g. Xilinx Virtex Ultrascale+ (VU9P/VU13P) and smaller parts where processing is less critical e.g. Xilinx Kintex Ultrascale

Overall over 200 FPGAs

Processing partitioned regionally and in time as appropriate

Algorithm example: particle flow

Aim to reconstruct and identify all particles in an event using all sub-detector information

- Efficient reconstruction of charged particles in the tracker, down to threshold of 2 GeV
- Fine granularity calorimetry to resolve the contributions from neighbouring particles
- PUPPI algorithm filters particles
 - Uses vertex to define a particle weight
 - Basically a probability of being prompt
- Ambitious algorithm for Level-1 trigger

Algorithm example: machine learning

- Current **global trigger**: possible to apply requirements on correlations between multiple objects (masses, $\Delta \varphi$...)
- Natural continuation: instead of simple 1D cuts on objects and object correlations, use modern ML tools to build more powerful multivariate discriminators
- Software tools to port ML algorithms into FPGA firmware now exist (e.g. <u>hls4ml</u>)
- FPGA resources now allow it

- Proof of principle for VBF Higgs
- L1 design, signal efficiency and rate, feasibility study for firmware
 - Designed DNN with input variables based on jets and missing energy kinematics
 - Three hidden layers with 72 nodes each
 - 4300 multiplications/inference
 - Latency ~0.5 µs DSP usage ~40% in VU9P

Further information

The Phase-2 Upgrade of the CMS Level-1 Trigger Technical Design Report

The Phase-2 Upgrade of the CMS Level-1 Trigger CERN-LHCC-2020-004; CMS-TDR-021 <u>http://cds.cern.ch/record/2714892</u>

