
Alex Tapper

Introduction to polarimetry at HERA

• Electron polarisation at HERA
• The LPOL
• The TPOL
• The LPOL cavity
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Electron polarisation in storage rings

• Electron beam deflected around
a ring with B field in the y axis
radiates photons

• Flip of the projection of electron
spin along y can occur

• Spin flip probabilities per unit time

γ≡Lorentz factor (Ee/me) ρ≡bending radius of B field λc≡Compton
wavelength r0≡electron radius

• Since ω↑↓≠ω↓↑ starting from an unpolarised beam, synchrotron
radiation induces a transverse polarisation
– Sokolov-Ternov effect
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Polarisation in storage rings

The asymptotic polarisation limit is given by

With time evolution given by

where

is the build up time.
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Polarisation in storage rings

So what should we note about this?

• PST is a constant and PST<1
• PST antiparallel to the B field (parallel for positron beam with

same field)
• At HERA Ee=27.5 GeV τST≈40 mins
• Long timescale reflects small size of asymmetry. Compare to

τ≈10-8 s for photon emission.
• Long timescale also means same all around ring
• τST highly energy dependent ∝1/E5

• PST and τST calculable from first principles
– Measurement of rise-time τ provides absolute P calibration
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Depolarising effects

• Of course all the previous stuff assumes
– a perfect planar storage ring (i.e. only perfectly vertical

homogenous B field)
– After photon emission the electron stays on the perfect orbit

• In a real storage ring
– Horizontal and longitudinal fields (mis-aligned magnets etc.)
– Electrons oscillate around the central orbit
– Stochastic depolarisation through synchrotron radiation
– Interactions with the proton beam

• Depolarising effects lead to PMAX<PST

• Have to correct orbit to keep spin aligned
– Empirically done using “harmonic bumps”
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Spin rotators

• Make use of spin precession (ΔφSPIN=62.5ΔφORBIT→ ΔφORBIT~mrad)

• Use series of transverse magnetic fields to change PY into PZ

• Move section vertically during access days to change helicity
• So called “mini-rotator” only 56m long!
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Polarisation at HERA

• Spin rotators around H1, HERMES and ZEUS
• Two independent polarimeters

– Longitudinal polarimeter (LPOL) near HERMES
– Transverse polarimeter (TPOL) near HERA-B hall
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Polarisation at HERA

• Fills from yesterday
• Rise of polarisation, some tuning and rise towards

the end of the fill
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Polarisation at HERA

• Fills from yesterday
• Non-colliding bunches higher P than colliding
• Far fewer non-colliding hence larger error
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Compton scattering

• Spin-dependent cross section for γ-e scattering

• S1,S3 linear and circular components of laser beam

• PY,PZ transverse and longitudinal components of
lepton beam polarisation

• Use asymmetry between S3=+1 and S3=-1 states
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LPOL

• Nd:YAG laser - 3ns x 100 mJ @ 100 Hz
• Pockels cell converts linear (>99%) light to circularly polarised light
• Transported to tunnel and collided with electron beam
• Detect backscattered photons in calorimeter downstream
• Laser polarisation monitored in tunnel and ctrl room



Page 12ZEUS lecture 26th September 2005

LPOL single-photon mode

• nγ≈0.001 per bunch crossing

• Can use single-photon cross
section. Calculate σ from QED

• Compton edge gives energy
calibration

• Large separation of LH and RH
states (up to 0.6)

• But at LPOL location
Bremsstrahlung background is
too high

• s/b≈0.2 gives too large a
statistical error (δP/P=0.01
takes 2.5 hours)

• Use for systematic studies
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LPOL multi-photon mode
• nγ≈1000 per bunch

crossing
• No background

problems
• No easy way to monitor

calorimeter energy
response (E>5 TeV!)

• High power pulsed laser
but only at 100 Hz
compared to HERA 10
MHz

• δP/P=0.01 in 1 minute
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LPOL

• NaBi(WO4)2 crystal calorimeter
• Tungsten-scintillator calorimeter for systematic studies
• In multi-photon mode asymmetry given by:

Am = (I3/2-I1/2)/(I3/2+I1/2) = PcPeAp
Ap=(Σ3/2- Σ1/2)/(Σ3/2+ Σ1/2) = 0.184 if detector is linear

• Get Ap from test-beam response dEErEdEd
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LPOL

• Linearity dominates
systematic uncertainties for
LPOL

• Contributions from the
measured response function
and the extrapolation to
multi-photon mode ± 1.6Total

±1.2
(± 0.9)
(± 0.8)
± 0.5
± 0.3
± 0.2
± 0.4
± 0.8

Analysing Power Ap

- response function
- single to multi photon
transition

Ap long-term stability
Gain mismatching
Laser light polarization
Pockels cell misalignment
Electron beam instability

δP/P (%)Systematic source
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TPOL

• Ar-ion 10W cw
laser

• Linear polarisation
>99%

• Pockels cell
converts to circularly
polarised

• Helicity swapped
at 90 Hz

• One measurement cycle
40 secs of laser on - 20 secs
laser off for background measurement

• Laser power and polarisation monitored in tunnel and ctrl room
• DAQ rate 100 kHz
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TPOL

• Have to measure Eγ and spatial asymmetry
• Use single-photon mode and Compton edge for energy calibration

online
• Tungsten-scintillator sampling calorimeter
• Calorimeter has upper and lower halves
• Measured energy E γ=EU+ED
• Energy asymmetry η = (EU-ED)/(EU+ED)
• Gives up-dn spatial asymmetry….

…but have to transform to y
• Known only from test-beam
• Depends on transverse shower

shape in calorimeter
• Main uncertainty η-y

transformation
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TPOL - silicon detector

• Measure y position of
Compton beam accurately
at the face of the CAL

• Provide in-situ η-y

calibration

• 6cm x 6cm silicon sensors
• Two planes: x and y
• Pitch 80(240) µm in y(x)
• Readout < 1 kHz - much

slower than CAL
• No fast online measurement
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TPOL - fibre detector

• TPOL is a high radiation area

– Estimated to be ~2MRad/year
– Expect some degradation of the

silicon response
– Especially concentrated at the

centre of the beam

• Installed scintillating fibre detector upstream of silicon
• Can be scanned vertically over the face of the silicon detector

using a stepping motor
• Periodic scans can monitor the silicon response at different y

coordinates
• If necessary avoid bias by correcting silicon response
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TPOL online analysis

• Integrate d2σ/dEγdη over sensitive region in Eγ and η

• Consider asymmetry
between laser beam
helicities

• ∏ is the analysing power from rise-time calibration and MC
• S3 is measured between HERA fills to be 1 with error ±0.5%

• Fast and simple method using only CAL
• This is what you see on TPOL monitor in the control room and

actually what we’ve used in physics analyses so far
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TPOL online analysis

Implicitly assumes that the following
are constant:

– Vertical size of lepton beam at the IP
– Position of the Compton beam on the

CAL
– Vertical size of the Compton beam at

the CAL (focus)
– Energy resolution of the CAL
– η-y transformation
– Linear component of laser light S1

One example of drawback is the
focus which changes significantly
over time and causes bias in the
measurement
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TPOL online analysis

• Focus has a correction
derived from MC to
remove bias

• Gives nice agreement
between LPOL and
TPOL measurements

• Still other parameters
are assumed to be
stable

• Does not exploit the
full sensitivity of the
data

• Develop more complex
offline analysis →
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TPOL offline analysis

• Develop new analysis
– More robust to changes in conditions
– More precise polarisation measurement
– Better control of systematics

• Exploit full 2D information from CAL and new position
sensitive detectors

• Multi-parameter fit to include
– Beam conditions
– CAL response
– η-y transformation
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TPOL offline analysis

• After considerable study
end up with 5 free input
parameters
– 2 to define the vertical size

and position of the beam
– 2 for the CAL calibration
– 1 for the CAL energy

resolution

• Good fit to all the data
• χ/ndf = 1.2

• Consistent with LPOL
• Robust to changes in beam

size and focus
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TPOL offline analysis

• First estimate of systematic uncertainty ~3.2%
• Largest contributions from η-y transformation

– This is where most of the work continues
– Understand systematic differences in η-y curve

• Still need work on CAL response too

±3.247Total

±0.78
±0.02
±0.87
±1.99
±1.97
±1.16

Distance
Beam offset
η-y curve

Fitting range
Calibration
Resolution

δP/P (%)Systematic source
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LPOL cavity

• Consider “few photon mode”
That’s nγ≈1 per bunch crossing

 Can still use single-photon cross
section

 Compton edge energy calibration
 Good systematic precision
 Enough statistics to overcome

the background

 Need a 10kW cw laser!

 Use a 1W cw laser and a Fabry-
Perot cavity with Q≈10000
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LPOL cavity

• Installed in the tunnel
• Initially laser electronics

damaged by radiation
but shielding improved
and now able to run
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LPOL cavity

• First Compton beam
observation March 2005

• Signal with nγ≈0.1 per
bunch crossing

• Histograms are of one
bunch and correspond to
~4 secs of data
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LPOL cavity

• Neither exisiting LPOL calorimeter suitable for cavity
– New calorimeter necessary

• Tungsten quartz-fibre sampling calorimeter
• Similar design to H1 luminosity monitor
• Cerenkov signal from quartz fibres
• Short calibration in DESY test beam then installed in tunnel
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LPOL cavity status

• Cavity and calorimeter both installed in tunnel
• Calorimeter being commissioned

– First signals seen

• Cavity has seen Compton signal
– Commissioning of DAQ etc. ongoing

• Promised first polarisation measurement before the
shutdown and routine operation afterwards

• Promised δP/P=0.001 and δP/P=0.01 /min/bunch
• Very fast measurement should aid HERA in tuning
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