

Calibration of the ZEUS calorimeter for hadrons and jets

Alex Tapper Imperial College, London for the ZEUS Collaboration

Workshop on Energy Calibration of the ATLAS Calorimeters, 21-24 July, 2002, Ringberg Castle

Outline

- Clustering
- Energy Flow Objects
- Backsplash
- Calibration for inclusive hadronic final states
- Calibration for jets
 - EFOs and momentum balance
 - Tracking and jet momentum balance
- Summary

The ZEUS detector

The ZEUS calorimeter - geometry

- EMC cells
 - 5x20 cm² (10x20 cm² in RCAL)
 - 1 interaction length
- HAC cells
 - 20x20 cm²
 - 3 interaction lengths (2 in BCAL)
- Readout 2 PMTs per cell
- Imbalance gives position

Clustering

- Try to remove effects of CAL granularity
- Ideally one cluster corresponds to one particle
- First combine cells in 2D locally i.e. in EMC sections, HAC1 and HAC2 sections separately
- Combine 2D clusters in EMC with others in HAC1 and HAC2 sections of CAL
- Probability distribution for combining from single particle MC events
- 3D CAL clusters -> "islands"

Energy Flow Objects

- Combine CAL and tracking information
- Optimise for best energy and position measurement
- For unmatched tracks use P_{trk} (assume π mass)
- No track: use CAL
- CAL objects with one or more tracks more complicated.....

Energy Flow Objects

- Consider whether CAL or CTD has better resolution
- Try to use track position even if energy is from CAL
- Treat muons separately using tracking information

Overall improvement in resolution of reconstructed quantities of ~20% when tracking information is used

Backsplash

- Energy deposits far from the trajectory of the original particle
 - Backsplash (albedo effect) from the face of the CAL
 - Showering in dead material
- In the ZEUS detector we see this effect for particles travelling in the forward direction
- Leads to a large bias in the reconstruction of the hadronic angle for forward hadronic energy

Backsplash

- Use MC to study these effects
- Remove low energy CAL deposits without a matched track >50° away from the hadronic angle
- Essentially unbiased reconstruction of hadronic angle in NC/CC DIS
- For high Q² events more complicated form to remove more as a function of angle

Inclusive Hadronic Final States

- Use NC DIS data to calibrate for hadronic $P_T > 10 \text{ GeV}$
- Single jet NC DIS events
- Isolate jet in FCAL or BCAL
- Balance hadronic P_T with electron P_T and DA P_T (proton remnant P_T is negligible)
- Check agreement between data and MC in several variables
- Set systematic uncertainties

Inclusive Hadronic Final States

• Hadronic energy calibration in FCAL and BCAL $\pm 1\%$

Inclusive Hadronic Final States

- Hadronic energy in RCAL is low
- Proton remnant P_T is not negligible
- Use events with large rapidity gap (diffractive)
- No proton remnant in CAL
- Unfortunately low statistics
- Agreement between data and MC \pm 2%

Jet Energy

• Method I

- Use Energy Flow Objects
- Derive dead material correction using NC DIS events
- Apply to jets reconstructed from EFOs
- Method II
 - Use jets reconstructed from CAL cells
 - Derive dead material correction from MC and charged tracks in CTD
 - Balance jet in central region with jet outside tracking to give full detector correction

Jet Energy - Method I

 Minimise difference between transverse momentum and longitudinal momentum of the hadronic system (using EFOs) and the DA prediction

- Set of optimised correction functions for energy loss in bins of polar angle
- Different corrections for data and MC

Jet Energy - Method I

 Check relative difference between corrected EFO P_T and DA prediction

- P_T well reconstructed using EFOs
- Data and MC differences within $\pm 1\%$

Jet Energy - Method I

- Check how well the absolute values compare to MC truth
- Using independent PhP MC
- Clear improvement
 over no correction
- Absolute energy scale good to 2-3% over most of η range

Jet Energy - Method II

- In barrel region compare E_T from CAL and charged tracks
- Use tracks to correct CAL $E_{\rm T}$
- Balance corrected jet with other jet in forward region
- Relies on simulation of charged tracks
- Ratio shows correction is ~2%

- Jet in NC DIS as function of E_{T} and η
- Jet energy scale uncertainty ±1%

Summary

- Clustering algorithm to remove effects of detector granularity
- Combine tracking and CAL information to form EFOs optimised for the best energy and position resolution
- Remove bias from backsplash

Summary

- Use EFOs and best knowledge of dead material to reconstruct hadronic final state
- Two independent corrections for jet events
- Energy scale uncertainty $\pm 1\%$ ($\pm 2\%$ in RCAL)
- Reduced systematic uncertainty in physics results