

Analysis of TPOL silicon detector cosmicray muon data

Alex Tapper

- Cosmic-ray test stand
- Signal reconstruction
- Data analysis
- Conclusions

Cosmic-ray muon test stand

- Test stand set up in London
- Trigger cosmic-ray muons with scintillator coincidence above and below silicon detectors
- Same electronics and settings as HERA tunnel
- Approx. 100 runs of 10K events each taken in 2003 and 2004
- All 4 TPOL silicon detectors used in HERA tunnel were tested

Signal reconstruction

- Procedure as follows:
 - 1. Calculate signal and noise and check data integrity (sync of readout chips and errors in header finding)
 - 2. Calculate pedestal for each channel (excluding signal defined as 3*noise and signal>10 ADC counts from step 1.)
 - Calculate common mode for each readout chip (excluding signal defined as 3*noise and signal>10 ADC counts from step 1.)
 - 4. Signal = raw ADC counts pedestal common mode
- Look for noisy and dead channels by eye at this point. Perhaps use an algorithm later to exclude them from clustering

Noise

Common mode

Pedestal

x plane: mean = 26.9 ADC counts y plane: mean = 30.6 ADC counts

Clustering

- Procedure as follows (similar to TPOL online):
- 1. Search for cluster seeds: signal>5*noise and signal>10 ADC counts
- 2. If clusters are <6 strips apart then merge them
- 3. Add adjacent ±6 strips to the seed if signal>3*noise and signal>10 ADC counts
- No treatment of dead/hot strips necessary
- Select events with only one cluster for further analysis
 - Clean cosmic-muon sample

Example events

Signal reconstruction all looks okay

Cluster position shows rotation and size of scintillator

Cluster signal and S/N

x plane: 32.0 ± 0.1 ADC counts y plane: 45.5 ± 0.3 ADC counts

Number of strips per cluster

Only n \leq 3 strips \rightarrow covers > 95% of clusters

• For 2 strip clusters

• For 3 strip clusters

• For 3 strip clusters

	Number of strips in cluster					
	x detector			y detector		
	1	2	3	1	2	3
Fraction of clusters	0.61	0.39	0.01	0.36	0.49	0.12
Fraction of charge in highest charge strip	1.0	0.5	0.49	1.0	0.5	0.45
Fraction of charge in 2 nd highest charge strip		0.5	0.31		0.5	0.32
Fraction of charge in 3 rd highest charge strip			0.20			0.24

Value is approximate peak position

Conclusion

- Analysis of cosmic-ray muon data from TPOL silicon test stand – Negligible dead and hot channels
- Detector response uniform to within
 - 10% in centre of detectors (±30 cm)
 - 20% at edges
- MIP signal gives:
 - x plane: 32.0 \pm 0.1 ADC counts
 - y plane: 45.5 ± 0.3 ADC counts
- Charge sharing characterised for single-cluster cosmic muons
 - histograms at http://www.hep.ph.imperial.ac.uk/~tapper/tpol.html