Controlling neutrino interaction systematics: The T2K experience

Tom Dealtry for the T2K collaboration

University of Oxford

Nulnt14 19 May, 2014

Outline

1 T2K

- 2 T2K cross section determination procedure
- Input uncertainties
 - 4 ND280 event selections & constraint
- Oscillation analyses
- 6 Effect of np-nh on ν_{μ} disappearance search

Summary

- 30 GeV proton beam running up to ${\sim}250$ kW (design 750 kW), producing ν_{μ} beam
- Far detector, SK, 2.5° off-axis
- Two near detectors at 280 m. INGRID on-axis, ND280 off-axis
- Studying neutrino oscillations & cross sections

T2K cross section determination procedure

- Take the default cross section model (NEUT)
- Assign uncertainties & tune single pion production using external data
- Tune nucleus-independent cross section parameters using ND280 ν_{μ} CC selections on carbon
 - Fit also constrains SK flux parameters
- Use a combination of the ND280 & external errors in oscillation fits at SK on oxygen

Flux prediction proceeds in a similar way (see talk by M.Posiadała)

MiniBooNE CCQE fit

PRD 81:092005

- Fit double differential cross section in lepton kinematics (*T_μ* & cos θ_μ)
- No correlated bin errors available
- 2 free parameters: M_A^{QE} & 10.7% CCQE normalisation

5 / 28

PRD 88:032002

MiniBooNE single π production fit

PRD 83:052007

Fit 3 samples

- $CC1\pi^0 Q^2$ (fully correlated errors)
- CC1 π^+ Q² (correlated errors unavailable)
- NC1π⁰ |**p**_{π⁰}| (uncorrelated errors)

Use 9 systematic parameters

• $M_A^{\rm RES}$

- W-shape: empirically modifies pion momentum distributions
- CC other shape: $\sigma_{CCother} = 0.4/E_{\nu}$
- 6 normalisations: CC coherent, CC1π, NC coherent, NC1π⁰, NC1π[±], NC other
 Redo fit multiple times, changing FSI parameters & π-less Δ-decay fraction

CCQE uncertainties

 $M_A^{
m QE}$

• Difference between best fit and NEUT nominal (1.21 ${\rm GeV}/c^2)$ CCQE norm ($E_{\nu} < 1.5 \, {\rm GeV})$

- MiniBooNE flux error
- CCQE norm (1.5 $< E_{
 u} <$ 3.5, $E_{
 u} >$ 3.5 GeV)
 - Differences between NOMAD & MiniBooNE data

Nuclear model parameters (nucleus dependent)

- Relativistic Fermi gas (RFG) parameters
 - Fermi momenta (p_F) and nuclear binding energy (E_b)
 - Uses electron scattering data
- Difference between RFG and spectral function models
 - Calculated using NuWro

Resonant π production uncertainties

 $M_A^{
m RES}$, CC1 π norm ($E_
u < 2.5\,{
m GeV}$), NC1 π^0 norm

 Best-fit values from default fit & covariances built from results of alternative FSI/PDD fits

W-shape

• Difference between nominal & best-fit

 $\text{CC1}\pi$ norm ($E_{\nu} > 2.5 \,\text{GeV}$)

• Extrapolation of difference between NEUT nominal & MiniBooNE

 π -less Δ -decay

• NEUT default is 20%. Allow to drop to 0% at 1σ

Other cross section uncertainties

- CC coherent norm
 - 90% C.L. upper limits are below the NEUT nominal. Assign 100% error
- NC coherent norm
 - Difference between NEUT nominal & SciBooNE
- CC other shape
- $\bullet~{\rm Extrapolate}$ error on MINOS inclusive cross section from 4 ${\rm GeV}$ NC $\pi^{\pm},$ NC other
 - Difference between NEUT nominal, Gargamelle & Derrick et al.
- $\nu/\bar{\nu}~{\rm norm}$
 - Comparison between MiniBooNE & MINERvA
- ν_{e}/ν_{μ} norm
 - Uses the work of Day et al. (PRD 86:053003)

Outline

1 T2K

- 2 T2K cross section determination procedure
- 3 Input uncertainties
- 4 ND280 event selections & constraint
- Oscillation analyses
- \bigcirc Effect of np-nh on u_{μ} disappearance search

Summary

ND280 CC inclusive selection

- The muon candidate is selected as the highest momentum negatively-charged TPC2 track with > 18 hits, starting in the FGD1 fiducial volume
- Veto events where the highest-momentum TPC2 track (that isn't the muon) is
 > 150 mm upstream of muon vertex
- Veto events where the muon candidate is backwards going
- Veto events with a possible broken FGD track
- Track should be muon-like, using TPC PID based on *dE/dx*

ND280 π selections

- $e^\pm\text{,}~\pi^\pm$ in TPC
 - Require long TPC2 tracks with FGD1 vertices
 - Tag particle as *p*, e[±], π[±] using TPC2 PID and charge ID
- Michel electron in FGD1
 - Require a time-delayed out-of-bunch FGD1 cluster, with a total charge of at least 200 photoelectrons
 - \bullet Tagged as π^+
- π^+ track in FGD1
 - Require a fully contained track within FGD1 & $|\cos \theta| > 0.3$
 - Tag particle as π[±] using FGD1 PID based on dE/dx

Split the CC inclusive sample into 3 subsamples:

- CC0π: 0 e[±] TPC2 tracks, 0 π[±] TPC2 tracks,
 0 Michel electrons, 0 π[±] FGD-only tracks
- **CC1** π^+ : 0 e^{\pm} TPC2 tracks, 0 π^- TPC2 tracks, exactly one TPC2 π^+ track, Michel electron, π^{\pm} FGD-only track

• CC-other: All other events.

Split the CC inclusive sample into 3 subsamples:

- CC0π: 0 e[±] TPC2 tracks, 0 π[±] TPC2 tracks, 0 Michel electrons, 0 π[±] FGD-only tracks
- **CC1** π^+ : 0 e^{\pm} TPC2 tracks, 0 π^- TPC2 tracks, exactly one TPC2 π^+ track, Michel electron, π^{\pm} FGD-only track

• CC-other: All other events.

Split the CC inclusive sample into 3 subsamples:

- CC0π: 0 e[±] TPC2 tracks, 0 π[±] TPC2 tracks, 0 Michel electrons, 0 π[±] FGD-only tracks
- **CC1** π^+ : 0 e^{\pm} TPC2 tracks, 0 π^- TPC2 tracks, exactly one TPC2 π^+ track, Michel electron, π^{\pm} FGD-only track
- CC-other: All other events.

Split the CC inclusive sample into 3 subsamples:

- **CC0** π 0 e^{\pm} TPC2 tracks, 0 π^{\pm} TPC2 tracks, 0 Michel electrons, 0 π^{\pm} FGD-only tracks
- **CC1** π^+ 0 e^{\pm} TPC2 tracks, 0 π^- TPC2 tracks, exactly one TPC2 π^+ track, Michel electrons, π^{\pm} FGD-only tracks
- CC-other All other events.

Purity	$CC0\pi$	$CC1\pi^+$	CC-other
CC0 <i>π</i>	72.4%	6.4%	5.8%
$CC1\pi^+$	8.6%	49 .2%	7.8%
CC-other	11.5%	31.0%	73 .6%
Background	2.3%	6.8%	8.7%
External	5.2%	6.6%	4.1%
Efficiency	47.8%	28.4%	29.7%

ND280 p_{μ} (before-FSI categories)

ND280 fit

- Fit the muon kinematics
 (p_μ, cos θ_μ) for each of the
 3 samples simultaneously
- Include cross section, FSI, flux & detector systematics
- M_A^{QE} , M_A^{RES} , normalisations (CCQE, CC1 π , NC1 π^0), and flux parameters propagated to oscillation analyses
 - Including correlations

ND280 fit results

ND280 fit results

	External tune	ND280 tune
$M_A^{ m QE}~({ m GeV}/c^2)$	1.21±0.45	1.24±0.07
SF (¹² C)	0 (RFG) $ ightarrow$ 1 (SF)	0.24±0.13
E_B (¹² C) (MeV)	25±9	$30.9{\pm}5.2$
p_F (¹² C) (MeV/c)	217± <mark>30</mark>	266.3±10.6
CCQE norm $\mathit{E_{ u}} < 1.5\mathrm{GeV}$	$1.00{\pm}0.11$	$0.97{\pm}0.08$
CCQE norm $1.5 < E_{ u} < 3.5{ m GeV}$	1.00±0.30	0.93±0.10
CCQE norm $E_{ u} > 3.5{ m GeV}$	1.00 ± 0.30	0.85±0.11
$M_A^{ m RES}$ (GeV/ c^2)	1.41±0.11	0.96±0.07
$\pi ext{-less} \ \Delta$ decay fraction	$0.20{\pm}0.20$	$0.21{\pm}0.08$
${\sf CC1}\pi^0$ norm $\mathit{E_{ u}} < 2.5{ m GeV}$	$1.15{\pm}0.43$	$1.26{\pm}0.16$
$CC1\pi^{0}$ norm $\mathit{E_{ u}} > 2.5\mathrm{GeV}$	$1.00{\pm}0.40$	$1.12{\pm}0.17$
CC coherent norm	1.00 ± 1.00	0.45± <mark>0.16</mark>
${\sf NC}\pi^0$ norm	$0.96{\pm}0.43$	$1.13{\pm}0.25$
CC other shape (GeV)	0.00±0.40	0.23±0.29
NC other norm	1.00±0.30	1.41±0.22

Outline

1 T2K

- 2 T2K cross section determination procedure
- 3 Input uncertainties
- 4 ND280 event selections & constraint
- Oscillation analyses
- \bigcirc Effect of np-nh on u_{μ} disappearance search

Summary

Oscillation analyses

Select single-ring events, fully contained with a fiducial volume vertex.

1 $\mu\text{-like ring}$

$$E_{\rm reco} = \frac{m_p^2 c^4 - (m_n c^2 - E_b)^2 - m_\mu^2 c^4 + 2(m_n c^2 - E_b) E_\mu}{2(m_n c^2 - E_b - E_\mu + p_\mu c \cos \theta_\mu)}$$

 μ -like

- Ring is PID'ed as $\mu\text{-like}$
- 0 or 1 Michel electron
- $p_{\mu} > 200 \, \mathrm{MeV}/c$

e-like

- Ring is PID'ed as e-like
- 0 Michel electrons
- $E_{\rm reco} < 1.25 \, {
 m GeV}$
- π^0 rejection

Oscillation analyses

Select single-ring events, fully contained with a fiducial volume vertex.

1 e-like ring

μ -like

- Ring is PID'ed as μ -like
- 0 or 1 Michel electron
- $p_{\mu} > 200 \, {
 m MeV}/c$

e-like

- Ring is PID'ed as e-like
- 0 Michel electrons
- $E_{\rm reco} < 1.25 \, {\rm GeV}$
- π^0 rejection

Oscillation analyses: effect of ND280 fit

Source of uncertainty	$1 R \mu \ \delta N_{SK} / N_{SK}$	1Re $\delta \textit{N}_{\it SK}/\textit{N}_{\it SK}$
SK+FSI	5.00%	3.65%
ND280-independent XSec	5.00%	4.69%
ND280 prefit	21.75%	26.04%
ND280 postfit	2.74%	3.15%
Total (ND280 postfit)	7.65%	6.75%
Total (ND280 prefit)	23.45%	26.80%

- Large reduction in uncertainties for parameters constrained by ND280 fit
- ND280-independent XSec parameters have large uncertainties
 - Need cross sections on water
 - ightarrow can constrain E_B , p_F , SF
 - \blacktriangleright Need new dedicated samples to fit ($\nu_{e},\,\overline{\nu}_{\mu},\,{\rm CC}$ coherent, ...)
 - \rightarrow can constrain more normalisations

np-nh effect methodology

1 $\mu\text{-like ring}$

- Model np-nh events using Nieves model (Phys.Lett.B 707:72) in NuWro
- Replace NEUT π-less
 Δ decay events

- Create toy MC including np-nh events at ND280
 - Fit without an np-nh-controlling parameter
- Create toy MC including np-nh events at SK with same systematic tweaks as ND280
 - Fit using the updated ND280 covariance matrix
 - Fit without an np-nh-controlling parameter
- Repeat for toy with no np-nh events
- Find best-fit point differences between the 2 toys

np-nh effect results

Improvements for future analyses

- Implemented an np-nh model in NEUT
 - See talk by P.Sinclair
- Implemented a spectral function model in NEUT
 - See talk by A.Furmanski
- Updating external data fits with the new models & new data

 - See poster by C.Wilkinson
- Improving the ND280 event selections
 - Better cuts
 - Increasing phase space
 - Adding new selections
- We are constantly looking for new ways to constrain & improve our cross section model

- Initial uncertainties determined using fits to MiniBooNE data and comparisons with other datasets
- Fits to ND280 CC0 π , CC1 π^+ , CC-other selections result in greatly reduced errors
 - 21.8% \rightarrow 2.7% for 1 μ -like ring
 - $26.0\% \rightarrow 3.2\%$ for 1 *e*-like ring
- Work being done to reduce the effect of the ND280-independent XSec parameters from current value of 5%
- $\bullet\,$ np-nh bias evaluated in ν_{μ} disappearance fits as a small effect
 - Small bias (0.2%-0.3%), much less than the RMS from other systematics (1.8%-5.6%)

Backups

ND280 selection distributions (before ND280 fit)

ND280 CC0 π , CC1 π^+ , CC-other purities

	$CC0\pi$	$CC1\pi^+$	CC-other
CC 0 <i>π</i>	72.4%	6.4%	5.8%
$CC1\pi^+$	8.6%	49 .2%	7.8%
CC-other	11.5%	31.0%	73.6%
Background	2.3%	6.8%	8.7%
External	5.2%	6.6%	4.1%
	$CC0\pi$	$CC1\pi^+$	CC-other
CCQE	63.3%	5.3%	3.9%
CC resonant	20.3%	39 .4%	14.2%
CC coherent	1.4%	10 . 6 %	1.4%
CC DIS	7.5%	31.3%	67.7%
NC	1.9%	4.7%	6.8%
$\overline{ u}_{\mu}$	0.19%	1.7%	0.9%
ν_e	0.17%	0.4%	0.9%
External	5.2%	6.6%	4.1%
Other	0.03%	0.04%	0.2%

Tom Dealtry (University of Oxford) Controlling neutrino interaction systematics at T2K NuInt14, 19 May, 2014 31 / 28

ND280 θ_{μ} (before-FSI categories)

CCQE RES DIS COH NC $\overline{\nu}_{\mu} \nu_{e}$ Out-of-fiducial-volume

ND280 $\cos \theta_{\mu}$ (before-FSI categories)

CCQE RES DIS COH NC $\overline{\nu}_{\mu} \nu_{e}$ Out-of-fiducial-volume

ND280 p_{μ} (after-FSI categories)

ND280 $heta_{\mu}$ (after-FSI categories)

$\frac{\text{CC0}\pi \text{ CC1}\pi^+ \text{ CC-other}}{\text{Background External}}$

ND280 cos θ_{μ} (after-FSI categories)

$\frac{\text{CC0}\pi \text{ CC1}\pi^+ \text{ CC-other}}{\text{Background External}}$

ND280 selection distributions (after ND280 fit)

ND280 CC0 π (after ND280 fit)

ND280 CC1 π^+ (after ND280 fit)

ND280 CC-other (after ND280 fit)

ND280 fit results for different run periods

ND280 fit results for different run periods

- Run 1-3 and Run 4 (\sim equal statistics) fit results consistent
- Suggest fits dominated by systematics that are common to 2 statistically independent datasets

Inputs to the oscillation analyses

Inputs to the oscillation analyses

0-10 SK ν_{μ} flux parameters, 11-15 SK $\overline{\nu}_{\mu}$ flux parameters, 16-22 SK ν_{e} flux parameters, 23-24 SK $\overline{\nu}_{e}$ flux parameters, 25 MAQE, 26 MARES, 27-29 CCQE normalisation, 30-31 CC1 π normalisation, 32 NC1 π^{0} normalisation.

Inputs to the oscillation analyses

$M_{A}^{ m QE} \ ({ m GeV}/c^2)^*$	$1.24{\pm}0.07$	
p_{F} (¹⁶ O) (MeV/c)	225±30	
E_B (¹⁶ 0) (MeV)	27±9	
SF (¹⁶ O)	0 (RFG) $ ightarrow$ 1 (SF)	
CCQE norm $E_ u < 1.5{ m GeV}$ *	$0.97 {\pm} 0.08$	
CCQE norm 1.5 $< E_{ u} <$ 3.5 GeV *	$0.93{\pm}0.10$	
CCQE norm $E_{ u} > 3.5{ m GeV}$ *	$0.85{\pm}0.11$	
$M_A^{\rm RES}$ (GeV/ c^2)*	0.96±0.07	
$\pi ext{-less} \Delta$ decay fraction	$0.20{\pm}0.20$	*Constrained
CC1 π^{0} norm $\mathit{E_{ u}}$ < 2.5 GeV *	$1.26{\pm}0.16$	
CC1 π^{0} norm $E_{ u} > 2.5{ m GeV}$ *	$1.12{\pm}0.17$	by ND200
CC coherent norm	$1.00{\pm}1.00$	
$NC\pi^0$ norm*	$1.13{\pm}0.25$	
$NC\pi^\pm$ norm	$1.00{\pm}0.30$	
W-shape (MeV/ c^2)	87.7±45.3	
CC other shape (GeV)	0.00±0.40	
NC other norm	$1.00{\pm}0.30$	
$ u_e$ to $ u_\mu$ ratio	1.00±0.03	
$ u$ to $\overline{ u}$ ratio	$1.00{\pm}0.20$	

Tom Dealtry (University of Oxford) Controlling neutrino interaction systematics at T2K NuInt14, 19 May, 2014 45 / 28

Analysis improvements

High angle tracks

Complementary to current selection (no double counting) (i.e. events with tracks with \leq 19 TPC2 hits)

- What external neutrino scattering data were used to inform the generator level uncertainties (before obtaining any constraint from own data)?
 - MiniBooNE, SciBooNE, MINERvA, NOMAD, ... Slides 5-9
- Oid you also utilise any electron-nucleus and hadron-nucleus scattering data. What aspects of the interaction model were constrained?
 - RFG parameters. Slide 7
- Quote all the input generator level uncertainties.
 - Slide 20
- How were these uncertainties propagated to the physics analysis? Did you consider correlations between the generator level uncertainties and if no, why?
 - Correlations & tuning only for the pion fit. Slide 8
- Which were the samples used for constraining the interaction uncertainties? Please provide details on the selection cuts, purity and efficiency and a breakdown of event categories according to generator.
 - CC0 π , CC1 π^+ , CC-other. Slides 11-17, 31-40

- Which aspects of the interaction model were tuned by the near detector data or control samples? Explain the procedure.
 - CCQE, CC1 π , NC1 π^0 . Slides 18-20
- Was there a significant tension between the interaction model tunes (tunes based on external vs own data, tunes obtained with data from different running periods / different running conditions)?
 - MiniBooNE/ND280 tension in M_A^{RES} . Slide 17
 - No tension in Runs 1-3 vs Run 4. Slide 42
- What was the systematic error improvement provided by the near detector or control samples? Provide details (uncertainty before / after constraint).
 - Slide 20
- How was the effect of neutrino interaction uncertainties decoupled from the effect of flux uncertainties and detector response effects?
 - Include all flux, detector, cross section parameters in a single fit. Slides 18-19, 44
- What uncertainties were not constrained directly by the near detector or control sample and how were they estimated?
 - Parameters not on Slide 18 are estimated using Slides 7-9

- Did you consider the possible effect of Np-Nh contributions? How does it affect you analysis?
 - Small effect. Slides 25-26
- How were the interaction uncertainties propagated to the oscillation analysis? Which correlations between systematics did you take into account?
 - Correlations between flux & cross section systematics.
 Other cross section systematics uncorrelated. Slides 44-45
- If applicable, which uncertainties were correlated between the near and far detectors? What was the level of error cancellation? Which were the dominant uncertainties?
 - $\blacktriangleright~\sim 20\% \rightarrow \sim 3\%$ error reduction. Slide 24
- How did you estimate the absolute neutrino energy? What was the impact of nuclear and hadronic simulation uncertainties?
 - Quasi-elastic formula. Slide 23
- Based on recent knowledge, is there any systematic uncertainty which you think may have been underestimated?