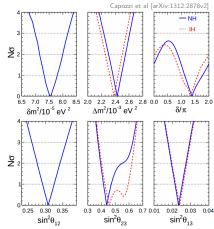
Neutrino Interaction Systematics and Future Long-Baseline Searches for Mass Hierarchy and CP Violation

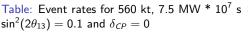
> Matt Bass Colorado State University

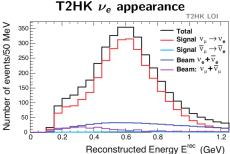

> > Nulnt 2014 19 May 2014

Overview

- Mass hierarchy (MH) and CP violation (CPV) in future long-baseline (LBL) experiments
 - LBL neutrino oscillations
 - T2HK (briefly), LBNE, LBNO
- Method, statistics, and systematics for sensitivity to MH and CPV
 - Focus on methods and effects of systematics. No attempt made to compare on equal footing or to account for possible phasing of the experiments.
 - Normalization uncertainties in LBNE and LBNO
- Example: LBNE's approach to computing sensitivity and incorporating detailed systematic uncertainties
 - The LBNE Fast Monte Carlo simulation
 - Fast MC systematic response functions
 - Near detector strategy to constrain systematics

Long-Baseline Oscillations

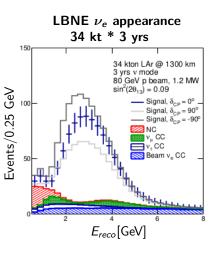

- Large θ₁₃ from both ν_e appearance and ν
 _e disappearance experiments
 - Possibility of observing CP violation
- Global fits produce strong constraints on many of the PMNS matrix parameters
- Will focus on the least constrained:
 - δ_{CP} and **CP violation** (sin(δ_{CP}) $\neq 0$)
 - Mass hierarchy: normal or inverted?
- Experiments with LBL (matter-effect) and high-statistics necessary to look for these oscillation effects in
 - $\nu_{\mu} \rightarrow \nu_{e}$ appearance
 - $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance


Global fit of PMNS matrix parameters to LBL, Solar, Kamland, Reactor, and atmospheric measurements assuming either normal or inverted hierarchy

Future LBL Experiments: T2HK

- Tokai to Hyper-K (T2HK) LBL physics:
- L: 295 km
- *E_ν*: 0.6 GeV (off-axis)
 - Narrow-band beam
- ▶ Total POT: 1.56 × 10²²
- Far Detector: 560 kt (fiducial) WC

	$CC \ u_{\mu} ightarrow u_{e}$	Total BG
25% ν mode	3044	706
75% $\bar{\nu}$ mode	2506	892



Future LBL Experiments: LBNE

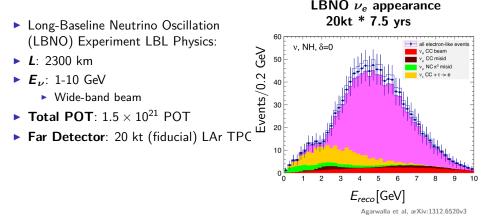
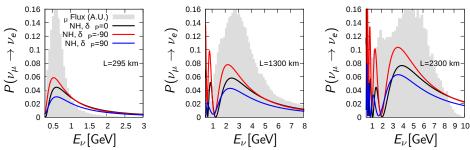

- Long-Baseline Neutrino Experiment (LBNE) LBL Physics:
- ▶ **L**: 1300 km
- *E_ν*: 0.5-8 GeV
 - Wide-band beam
- ▶ **Total POT**: 9 × 10²¹ POT
- Far Detector: 34 kt (fiducial) LAr TPC

Table: Event rates for 34 kt, 1.2 MW, 6 years with $\sin^2(2\theta_{13}) = 0.09$ and $\delta_{CP} = 0$

	$CC \ \nu_{\mu} \rightarrow \nu_{e}$	Total BG
50% ν mode	789	364
50% $ar{ u}$ mode	190	187

Future LBL Experiments: LBNO



Beam	ν_{μ} unosc.	ν_{μ} osc.	ν_e beam	ν_{μ}	$\nu_{\mu} \rightarrow \nu_{\tau}$	$\nu_{\mu} \rightarrow \nu_{e} CC$		
	CC	CC	CC	NC	CC	$\delta_{CP} = -\pi/2$,	0,	$\pi/2$
LBNO: 2300 km NH								
400 GeV, 750 kW								
$1.5 \times 10^{20} \text{ POT/year}$								
50kt years ν	3447	907	22	1183	215	246	201	162
50kt years $\bar{\nu}$	1284	330	5	543	98	20	27	29

Expected events at 50 kt.year in ν and $\bar{\nu}$ modes

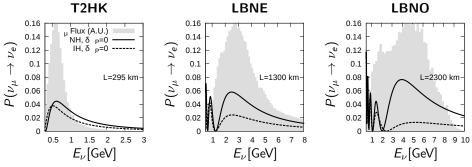
ν_e Appearance: CP Violation

LBNE

Matt Bass (CSU)

LBNO

$$\nu_{e} \text{ Appearance: Mass Hierarchy}$$


$$P_{\nu_{\mu} \to \nu_{e}} \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}((1-x)\Delta)}{(1-x)^{2}}$$

$$- \alpha \sin 2\theta_{13} \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin (x\Delta) \sin ((1-x)\Delta)}{x} \qquad x = \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{31}^{2}}$$

$$+ \alpha \sin 2\theta_{13} \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin((1-x)\Delta)}{(1-x)}}{x} \qquad \Delta = \frac{\Delta m_{31}^{2}}{4E}$$

$$+ \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x\Delta)}{x^{2}}$$

T2HK

Matt Bass (CSU)

Simulating the Experiments

▶ **T2HK**: very similar to T2K, but some differences

- Beam upgrade, event rates in the near detector
- Upgrades to near detector(s)
- FD has lower PMT coverage (SK2)

LBNE and LBNO: have similar challenges

- State of the art detector technologies come with reconstruction challenges
- ND design still uncertain
 - Identical vs high resolution detectors
 - Methods of propagating constraints to the FD

Statistics for MH and CPV Sensitivity

• Quantify experimental sensitivity using χ^2 (ratio of Poisson likelihoods):

$$\chi^{2}(\boldsymbol{\theta}_{true}, \boldsymbol{\theta}_{test}, \boldsymbol{f}) = 2 \cdot \sum_{i}^{N_{bins}} \left(n_{i}^{true} \cdot \ln \frac{n_{i}^{true}}{n_{i}^{test'}} + n_{i}^{test'} - n_{i}^{true} \right) + \sum_{j}^{N_{systs}} \frac{f_{j}^{2}}{\sigma_{j}^{2}}$$

- ▶ \boldsymbol{n}^{true} : Sig.+BG events for $\boldsymbol{\theta}_{true}$ oscillation parameters
- *n*^{test'}: Sig.+BG events for θ_{test} oscillation parameters and *f* systematic parameters
 - f encodes all allowed systematic variations and is constrained by priors (σ)

Mass Hierarchy Statistic

•
$$\Delta \chi^2_{MH} = \chi^2(NH, IH) - \chi^2(NH, NH)$$

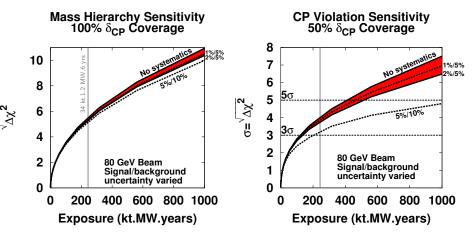
► No stat. fluctuations: $\Delta \chi^2_{MH} = \chi^2(NH, IH)$

CP Violation Statistic

$$\Delta \chi^2 = \operatorname{Min}[\chi^2(\delta_{CP}^{true}, \delta_{CP}^{test} = 0), \\ \chi^2(\delta_{CP}^{true}, \delta_{CP}^{test} = \pi)]$$

$$\sqrt{\Delta \chi^2} \approx \sigma$$

Normalization Uncertainties in LBNE


- \blacktriangleright Total sensitivity given by joint fit of ν_e appearance and ν_μ disappearance in ν and $\bar{\nu}$ modes
 - Each χ^2 minimized with respect to systematics parameters

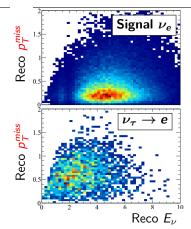
$$\chi^2_{\textit{total}} = \chi^2_{\nu_e \ \textit{App.}} + \chi^2_{\bar{\nu}_e \ \textit{App.}} + \chi^2_{\nu_\mu \ \textit{Disapp.}} + \chi^2_{\bar{\nu}_\mu \ \textit{Disapp.}} + \chi^2_{\bar{\nu}_\mu \ \textit{Disapp.}}$$

Nominal: normalization systematics

- ▶ 1% on signal, 5% on total background in ν_e , $\bar{\nu}_e$ appearance
- ▶ 5% on signal, 10% on total background ν_{μ} , $\bar{\nu}_{\mu}$ disappearance
- ▶ Uncorrelated among ν_e appearance, $\bar{\nu}_e$ appearance, ν_μ disappearance, $\bar{\nu}_\mu$ disappearance samples
 - Residual uncertainties assuming that correlated pieces cancel
 - Ongoing studies will justify/update these estimates

LBNE Sensitivity & Norm. Uncertainties

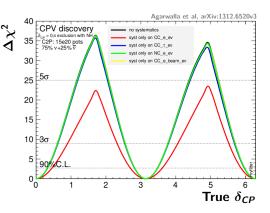
- No systematics and normalization systematic uncertainties on signal/background from 1%/5% to 5%/10%
- Exposures less than 100 kt.MW.years are statistically limited
- Small effect for MH (due to shape) but significant effect for CPV


Matt Bass (CSU)

Normalization Uncertainties in LBNO

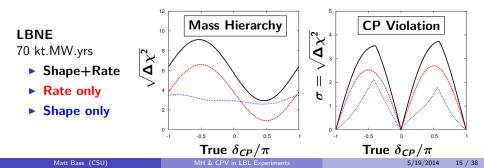
$$\chi^{2}(\boldsymbol{\theta}_{true}, \boldsymbol{\theta}_{test}, \boldsymbol{f}) = 2 \cdot \sum_{i}^{N_{reco}, \boldsymbol{p}_{T}^{miss}} \left(n_{i}^{true} \cdot \ln \frac{n_{i}^{true}}{n_{i}^{test'}} + n_{i}^{test'} - n_{i}^{true} \right) + \sum_{j}^{N_{systs}} \frac{f_{j}^{2}}{\sigma_{j}^{2}}$$

Nominal: normalization systematics

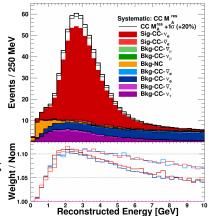

- ▶ 5% on signal normalization
- ▶ 5% on beam ν_e background
- 20% on ν_τ background (for CP violation sensitivities)
- ▶ 10% NC and ν_{μ} CC background
- Correlated across analysis samples

Agarwalla et al, arXiv:1312.6520v3

LBNO Sensitivity & Norm. Uncertainties

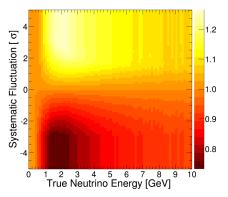

- ▶ 5% on signal normalization
- ▶ 5% on beam ν_e background
- ▶ 20% on ν_{τ} background
- ► 10% NC and v_µ CC background

- Effects for each systematic on CP violation sensitivity
 - Largest effect from signal normalization uncertainty


Beyond Normalization Systematics

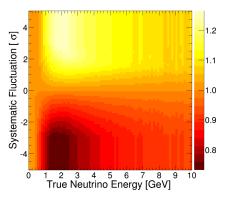
- Normalization systematics encompass part of uncertainties but do not degrade shape information
- Analyses in LBNO and LBNE (below) rely on shape and rate
 - Mostly rate in a narrow-band beam (T2HK)
- LBNE and LBNO are both performing detailed studies of the detector designs and requirements based on MC simulations for the near and far detectors
 - Including detailed effects of neutrino interaction systematics
- Will discuss the current state of LBNE's simulation efforts

LBNE Simulation: Fast MC


- LBNE is developing a Fast Monte Carlo (Fast MC) to characterize effects of uncertainties in flux, cross-sections, FSI, beamline tolerances, beam design optimizations, and energy scale/resolution
 - LBNE flux predictions, GENIE event generator, parameterized detector response
- Simulates particle-by-particle thresholds, missing energy, and smearing
- Detector response is parameterized by inputs from MicroBooNE simulations, GEANT4, and ICARUS
- Realistic kinematics used to build selections and calorimetrically reconstruct energy
 - p_T^{miss} cut for ν_{τ} BG reduction

 Example: nominal (filled area) ν_e appearance event spectrum and variation (line) induced by +20% change in CC M^{res}_A

Fast MC Response Functions


- Fast MC generates set of systematic response functions that encode variations in event selections produced by variations in
 - Cross sections
 - Nuclear Models
 - Flux uncertainties
 - Energy resolutions
- Example: CC M_A^{res} 1σ change (+20% change in parameter) produces a +10% change in number of signal ν_e events at 2 GeV

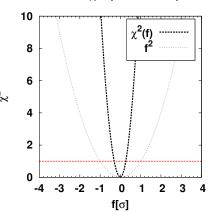
 Response (fractional change) of ν_e signal events in ν_e appearance analysis to changes in CC M^{res}_A

Fast MC Response Functions

- Fast MC generates set of systematic response functions that encode variations in event selections produced by variations in
 - Cross sections
 - Nuclear Models
 - Flux uncertainties
 - Energy resolutions
- Example: CC M_A^{res} 1σ change (+20% change in parameter) produces a +10% change in number of signal ν_e events at 2 GeV
- Propagate systematic parameters in the flux, generator (GENIE), or detector response through to the oscillation sensitivities

 Response (fractional change) of ν_e signal events in ν_e appearance analysis to changes in CC M^{res}_A

Response Functions and χ^2


$$\chi^{2}(\boldsymbol{\theta}_{true}, \boldsymbol{\theta}_{test}, \boldsymbol{f}) = 2 \cdot \sum_{i}^{N_{reco}} \left(n_{i}^{true} \cdot \ln \frac{n_{i}^{true}}{n_{i}^{test'}} + n_{i}^{test'} - n_{i}^{true} \right) + \sum_{j}^{N_{nuis}} \frac{f_{j}^{2}}{\sigma_{j}^{2}}$$

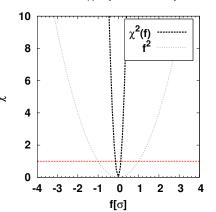
• Modified
$$\chi^2$$
 uses response functions

- n_i^{test'} includes the response function impact on each channel
- Right: χ^2 vs f for **CC** M_A^{res}
- Gray curve represents no response (penalty term only)
- \triangleright ν_e appearance only

$$\blacktriangleright \chi^2 = \chi^2_{\nu_e app}$$

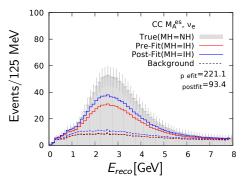
 $\nu_e \text{ appearance only,}$ CC M_A^{res} (1 σ = 20%)

Response Functions and χ^2 (2)


$$\chi^2(\boldsymbol{\theta}_{true}, \boldsymbol{\theta}_{test}, \boldsymbol{f}) = 2 \cdot \sum_{i}^{N_{reco}} \left(n_i^{true} \cdot \ln \frac{n_i^{true}}{n_i^{test'}} + n_i^{test'} - n_i^{true} \right) + \sum_{j}^{N_{nuis}} \frac{f_j^2}{\sigma_j^2}$$

► Modified
$$\chi^2$$
 uses response functions

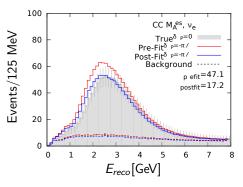
- n_i^{test'} includes the response function impact on each channel
- Right: χ^2 vs f for **CC** M_A^{res}
- Gray curve represents no response (penalty term only)
- Constraint from combined fit because f is now correlated between samples


$$\blacktriangleright \ \chi^2 = \chi^2_{\nu_e app} + \chi^2_{\bar{\nu}_e app} + \chi^2_{\bar{\nu}_\mu dis} + \chi^2_{\bar{\nu}_\mu dis}$$

Combined fit CC M_A^{res} (1 σ = 20%)

Fit Spectra - Response Function - MH

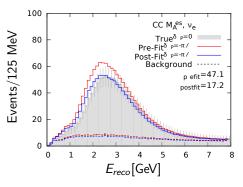
- Fit spectra show the effects of a systematic on the sensitivity to a particular oscillation hypothesis
- Where does the sensitivity to MH come from?
 - Compare gray area for NH to red line for IH
- How does the CC M^{res}_A systematic degrade the sensitivity if only v_e appearance sample is used?
 - Compare red line for pre-fit to blue line for post-fit
- ▶ Value of CC M_A^{res} shifted by 40% $(1.12 \rightarrow 1.56)$



Fast MC ν_e appearance spectrum comparing the normal hierarchy to the inverted hierarchy spectra before and after including effects from CC M_A^{res}

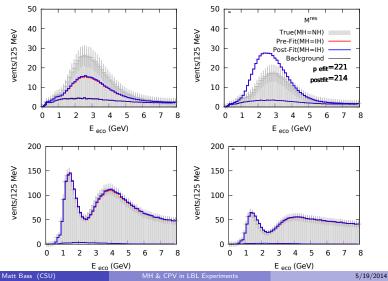
•
$$\delta_{CP} = 0$$

Fit Spectra - Response Function - CP Violation


- Repeat for CP violation spectra
- Where does the sensitivity to CP violation come from?
 - Compare gray area for δ_{CP} = 0 to red line for δ_{CP} = −π/2
- How does the CC M^{res}_A systematic degrade the sensitivity if only ν_e appearance sample is used?
 - Compare red line for pre-fit to blue line for post-fit
- ► Value of CC M^{res}_A shifted down by ~30%

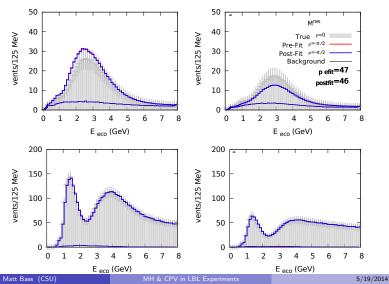
► Fast MC ν_e appearance spectrum comparing the $\delta_{CP} = 0$ to the $\delta_{CP} = -\pi/2$ spectra before and after including effects from CC M_A^{res}

Fit Spectra - Response Function - CP Violation

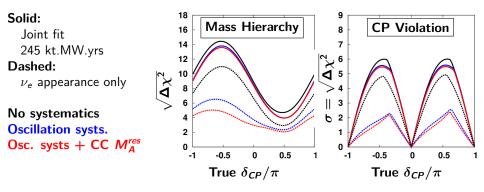

- Repeat for CP violation spectra
- Where does the sensitivity to CP violation come from?
 - Compare gray area for δ_{CP} = 0 to red line for δ_{CP} = −π/2
- How does the CC M^{res}_A systematic degrade the sensitivity if only ν_e appearance sample is used?
 - Compare red line for pre-fit to blue line for post-fit
- ► Value of CC M^{res}_A shifted down by ~30%
- Now constrain CC M^{res}_A through a joint ν_e, ν
 _e appearance + ν_μ, ν
 _μ disappearance fit

► Fast MC ν_e appearance spectrum comparing the $\delta_{CP} = 0$ to the $\delta_{CP} = -\pi/2$ spectra before and after including effects from CC M_A^{res}

Fit Spectra - Joint Fit - MH


- ▶ Joint fit yields large constraint on CC M_A^{res} (~ 4% or 0.2 σ)
 - Infinite precision assumed on other parameters, including oscillation parameters
 - Impact will increase when all other systematics included

2014 21 / 38


Fit Spectra - Joint Fit - CP Violation

- Joint fit yields large constraint on CC M_A^{res} ($\sim 1\%$ or 0.05σ)
 - Infinite precision assumed on other parameters, including oscillation parameters
 - Impact will increase when all other systematics included

22 / 38

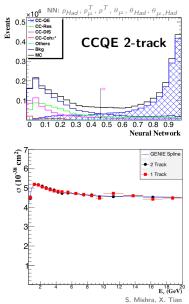
Fast MC Sensitivity

- \blacktriangleright CC M_A^{res} uncertainty propagated to sensitivity for MH and CP violation
 - Joint fit (solid) and ν_e appearance only (dashed)
- Large effect obvious for one sample is greatly reduced for joint fit
- See poster by D. Cherdack on "The LBNE Fast MC"

Further Constraints

- ▶ So far have only considered constraints from far detector samples
- Other external constraints expected on
 - Hadron production from NA61/SHINE
 - Form-factors from e-N scattering
 - Cross-sections from MINERvA and MicroBooNE
 - Test beam inputs from LArIAT and CAPTAIN
- Near detector constraints

LBNE Near Detector


- The LBNE ND will be essential to reaching discovery-level sensitivity to CPV in LBNE
- ► High resolution near detector designed with the goal of measuring the unoscillated flux with ≤ 2% precision for both shape and absolute normalization
- ND group has proposed set of physics measurements to constrain flux and estimated precision based on statistics at the near-site, ND simulations, and prior experience

Leptonic	$\nu + e ightarrow u + e$	${\sim}2\%$ on absolute flux	$0.5 \leq E_{ u} \leq 10{ m GeV}$
	$ u_{\mu} + e ightarrow u_e + \mu$	${\sim}2.5\%$ on absolute flux	$E_ u \geq 11~{ m GeV}$
QE	$ar{ u}_{\mu} + p ightarrow \mu + n$	${\sim}3\%$ on absolute flux	$0.5 \leq E_{ u} \leq 20 { m GeV}$
Coherent	$ u_{\mu} A \rightarrow \mu \rho A$	${\sim}5\%$ on absolute flux	$4 \leq E_{ u} \leq 20 { m GeV}$
Low ν_0	$ u_{\mu} + N \rightarrow \mu^{-} + X $	${\sim}1\text{-}2\%$ on FD/ND ratio	$0.5 \leq E_{ u} \leq 50 { m GeV}$
	$ar{ u}_{\mu}^{'}+N ightarrow\mu^{+}+X$	${\sim}1\text{-}2\%$ on FD/ND ratio	$0.5 \leq E_{ u} \leq$ 50 GeV

ND Flux Measurements

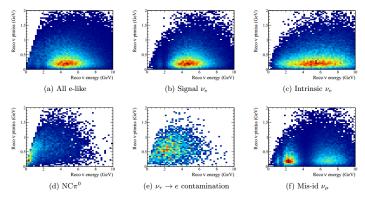
LBNE Near Detector - Simulation

- An ND Fast MC has been developed for baseline straw-tube tracker design
- Validated against existing NOMAD data and MC
- Example (right): extracted cross-sections for simulated 1 & 2-track CCQE selections
 - Evaluation of cross section measurement sensitivity
 - Propagate constraint to the FD analyses
 - Single constraint on QE events
 - In a full ND/FD combined fit
 - To do: evaluate systematic uncertainties

Simulations - Current

- The LBNE Fast MC (beam sim. + GENIE + parameterized det. response) simulates neutrino interaction observables, and can be used to:
 - Generate near detector and far detector analysis samples
 - Reconstructed event kinematics that respect physics, det. capabilities
 - Realistic signal and background acceptances
 - Propagate systematic uncertainties event-by-event
 - Flux: beamline tolerances, physics models
 - Cross Section: model parameters, FSI
 - Detector response: calibration, energy scale
- Current studies focus on a detailed understanding of individual systematics:
 - Effects on far detector analysis spectra
 - Sensitivity degradation
 - Current and future external constraints
 - Constraints from an LBNE near detector

Simulations - Future

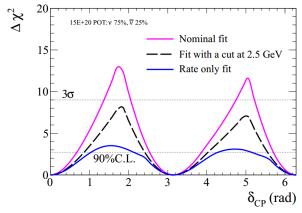

- ▶ Future studies (~6 months) will focus on:
 - Cross section ratio (ν_e/ν_μ , ν_τ/ν_μ , $\bar{\nu}/\nu$) uncertainties
 - Effect of multiple systematics
 - Systematic parameter covariances
 - Design requirements and optimizations (FD, ND, beam)
- ► The **VALOR** group is working on a 3-flavor analysis for LBNE, LBNO, and T2HK based on their T2K analysis
 - Developing experiment agnostic software tools
 - Simulate near detector samples, analyze, produce covariance matrix
 - Simulate far detector samples, fit for oscillation parameters, and constrain systematics with covariance matrix

Summary

- Constraining systematics is essential to discovery of CP violation and determining the mass hierarchy
- Shape information is crucial and further studies that introduce realistic shape uncertainties are underway
- LBNE and LBNO both developing detailed simulations to study effects of neutrino interaction, flux, and detector systematics
- The LBNE Fast MC simulation effort has started to produce results estimating impact of individual systematics

Backup slides

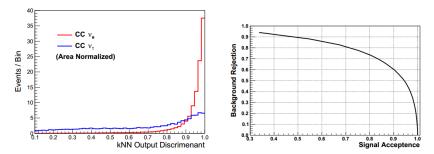
LBNO - Event Distributions



Agarwalla et al, arXiv:1312.6520v3

Event distributions for channels that contribute to the ν_e appearance sample
 δ_{CP} = 0, Normal Hierarchy

LBNO - Rate Only and 2nd Osc. Max.


- Rate only leads to drastic loss in CP violation sensitivity
- Covering multiple oscillation maxima contributes greatly to sensitivity

Agarwalla et al, arXiv:1312.6520v3

LBNE - $u_{ au}$ Reduction

- ► LBNE Fast MC uses a preliminary algorithm for removing ν_{τ} CC induced backgrounds from the ν_e appearance and ν_{μ} disappearance samples
- ▶ k-Nearest-Neighbors (kNN) ML technique from ROOT TMVA is used
- kNN inputs are: sum of transverse momentum wrt incoming ν direction, *E_{reco}*, reconstructed *E_{had}*

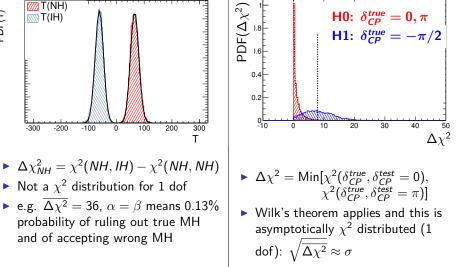
LBNE ND - Reference Design

 Reference design is a fine-grained tracker consisting of a straw-tube tracker and ECAL inside of a 0.4-T dipole magnet

FGT	Parameters
-----	------------

Parameter	Value
STT detector volume	$3 \times 3 \times 7.04 \text{ m}^3$
STT detector mass	8 tons
Number of straws in STT	123,904
Inner magnetic volume	$4.5 \times 4.5 \times 8.0 \text{ m}^3$
Targets	1.27-cm thick argon (~ 50 kg), water and others
Transition radiation radiators	2.5 cm thick
ECAL X ₀	10 barrel, 10 backward, 18 forward
Number of scintillator bars in ECAL	32,320
Dipole magnet	2.4-MW power; 60-cm steel thickness
Magnetic field and uniformity	0.4 T; < 2% variation over inner volume
MuID configuration	32 RPC planes interspersed between 20-cm thick layers of steel

FGT Performance


Performance Metric	Value
Vertex resolution	0.1 mm
Angular resolution	2 mrad
E_e resolution	5%
E_{μ} resolution	5%
$ u_{\mu}/\overline{ u}_{\mu}$ ID	Yes
$\nu_e / \overline{\nu}_e$ ID	Yes
$NC\pi^0/CCe$ rejection	0.1%
$NC\gamma/CCe$ rejection	0.2%
$NC\mu/CCe$ rejection	0.01%

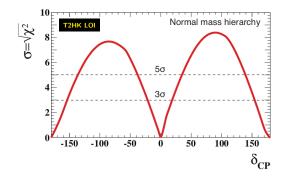
VALOR

- ▶ VALOR (C.Andreopoulos et al.) is a T2K oscillation fitting group
 - ▶ Well-established with contributions to many published T2K oscillation results.
 - Contributions from Liverpool, STFC/RAL, ETHZ, Oxford, Warwick, IFIC Valencia and Lancaster.
 - ▶ A full 3-flavor oscillation analysis framework that can also accommodate sterile neutrino models (3+1, 3+2).
 - Implements an indirect extrapolation method, with a flux and systematic constraint from a high-granularity ND.
- Software already adapted for T2HK:
 - Same beamline, ND and FD technology
 - Effort to include simulations for additional WC ND detector at 2km
- ► Further adaptation to include LBNE and LBNO is nearly complete:
 - Initial effort to derive flux and cross-section systematic constraints
 - ► Joint fit of the (*E*_{reco}, *y*_{reco}) distributions
 - Inclusion of several near detector semi-inclusive samples, including: ν_{μ} CC 1-track and 2-track QE-like, ν_{μ} CC $1\pi^{+}$, ν_{μ} CC $1\pi^{0}$, NC $1\pi^{0}$, ν_{e} CC
- Objectives:
 - Oscillation sensitivities for T2HK, LBNE, and LBNE using common physics assumptions.
 - ▶ Physics-driven requirements for the near detector designs of all 3 experiments

Statistics Detail for MH and CPV

► If Poisson statistical effects are included using Toy MC throws: Mass Hierarchy Statistic $\square T(NH)$ $\square T(IH)$ $\square T(IH)$ \square

Systematics for T2HK


$$\chi^2(\boldsymbol{\theta}_{true}, \boldsymbol{\theta}_{test}, \boldsymbol{f}) = 2 \cdot \sum_{i}^{N_{reco}} \left(n_i^{true} \cdot \ln \frac{n_i^{true}}{n_i^{test'}} + n_i^{test'} - n_i^{true} \right) + \sum_{i,j}^{N_{bins}} f_i(C^{-1})_{i,j} f_j$$

T2HK

- Uses normalized covariance matrix, C, to constrain per-bin systematic nuisance parameters f_i
- Assuming the T2K neutrino beamline and near detectors and takes into account improvements expected from future running in T2K

				T2HK LOI	
Source	ν	mode	$\overline{\nu}$ mode		
	Appearance	Disappearance	Appearance	Disappearance	
Flux & ND-constrained cross section	3.0	2.8	5.6	4.2	
ND-independent cross section	1.2	1.5	2.0	1.4	
Far detector	0.7	1.0	1.7	1.1	
Total	3.3	3.3	6.2	4.5	

T2HK Sensitivity

 \blacktriangleright CP violation detected at greater than 5 σ for 58% of δ_{CP} values

1:3 ν:ν