Effect of Neutrino Interaction Systematics for Future Sterile Neutrino Searches with Accelerator Beams

Corey Adams
Yale University

NuInt 2014
Roadmap

Focusing on **Booster Neutrino Beam**

- **Reduce Photon Background**
- **Reduce flux and cross section uncertainties**
- **Increase Statistics? Multiple Baselines?**
- **Oscillation searches happen here**
Neutrino ν_μ $\bar{\nu}_\mu$ ν_e $\bar{\nu}_e$

Neutrino 93.5% 5.9% 0.5% 0.1%
Anti-Neutrino 83.7% 15.7% 0.4% 0.2%

Intrinsic ν_e from the beam are the irreducible background in a ν_e appearance search.
MiniBooNE Detector

\[\nu_e + n \rightarrow e^- + p \]
Neutral Pion Background

Largest Backgrounds:
\(\pi^0, \text{ single } \gamma \text{ misID} \)

\[
\nu_\mu + N \rightarrow \Delta + \nu_\mu \\
\Delta \rightarrow N + \pi^0 \\
\Delta \rightarrow N + \gamma
\]

(not to mention all the other channels and FSI)

Easy to tag a \(\pi^0 \) as an electron if only one ring is visible (no particle ID for electron vs. photon).

Dominant Background - rate of \(\pi^0 \) production + detector response needs to be well understood.
MiniBooNE ν_e Appearance

2.8 σ excess

Not Hopeless!

High Statistics 2 photon measurement can constrain single photon background.

3.4 σ excess

Need to control neutral pions in future ν_e appearance experiments.

LArTPC

The Liquid Argon Time Projection Chamber

Anode wire planes:

Cathode Plane

$E_{\text{drift}} \sim 500\text{V/cm}$

Read out each wire

Corey Adams, Yale University
ν_e experimental Signature - LAr

Topological Separation of Electrons, Neutral Pions and Photons

Only Possible with a fine grained detector

Electron Candidate ArgoNeuT Data

Single Photon ArgoNeuT Data

Neutral Pion ArgoNeuT Data

\sim5cm gap

Corey Adams, Yale University
ν_e experimental Signature - LAr

Calorimetric Separation of Electrons and Photons

Charge per length at the start of the shower (dE/dX)

ArgoNeuT Data
Single Photon (small gap)

SIMULATION
A. Szcelc

$\gamma \rightarrow e^- + e^+$

Electrons
Photons

See talk by J. Asaadi - Sat 24 May
New results from A. Szcelc
expected @ Neutrino 2014!

Corey Adams, Yale University
Energy Reconstruction

\[E_{\nu}^{QE} = \frac{M E_\mu - m_\mu^2/2}{M - E_\mu + |p_\mu| \cos \theta_\mu} \]

\[E_{\nu}^{Cal.} = E_{lep} + \sum KE_{vis} + E_{missing} \]

CCQE Formula

Visible KE can be constrained by test beam experiments (LArIAT)

\(E_{missing} \) can be constrained, for example, by measuring neutron interactions in LAr (Captain)

What is the multiplicity and spectrum of neutrons produced in neutrino interactions?

Question for this workshop!
The MicroBooNE Detector

TPC Assembly began 2012
Cryostat Arrival mid 2013
TPC Insertion Dec. 2013
Endcap Welding mid 2014
Commissioning 2014
Data taking 2014/15 and on!

See Talks By:
O. Palamara (Wed)
S. Gollapinni (Thurs)
MicroBooNE ν_e Appearance

Primary Background is no longer π^0

Instead, beam contamination is the dominant background.

MicroBooNE ν_e Event Rates

Constraints on beam ν_e are just as important as π^0 for MicroBooNE.

π^0 background has high statistics, 2 photon measurement as constraint.

How to constrain the intrinsic event rate?

\[
\begin{align*}
\nu & & \bar{\nu} & & \nu & & \bar{\nu} \\
93.5\% & & 5.9\% & & 0.5\% & & 0.1\%
\end{align*}
\]

LSND Best Fit Amplitude: 0.3%
Intrinsic beam contamination: 0.6%

Corey Adams, Yale University
The ν_μ: ν_e event rate is partially correlated, which can reduce a systematic uncertainty on the intrinsic ν_e rate with a high statistics measurement of ν_μ rate.

\[
\frac{\text{Events} \, \nu_\mu}{\text{Events} \, \nu_e} \propto \frac{\Phi_{\nu_\mu}}{\Phi_{\nu_e}} \left(\frac{\sigma_{\nu_\mu}}{\sigma_{\nu_e}} \right) \quad \text{(Plus detector response!)}
\]
Future Experiments: LAr1-ND

The best way to constrain event rates is with a 2 detector experiment.

Booster Neutrino Beam

MiniBooNE
MicroBooNE (2015)

LAr1 - ND (2018)

See Talk by R. Guenette (Thursday)

Corey Adams, Yale University
LAr1-ND - Event Rate Predictions

\[\text{Events}_{ND} \frac{N D}{\mu B} \propto \Phi_{ND} \frac{\sigma_{\nu_e}}{\Phi_{\mu B}} \frac{\epsilon_{ND}}{\sigma_{\nu_e}} \frac{\epsilon_{\mu B}}{\mu B} \]

A near detector allows cancellation of event rate systematics (at least to first order).

The flux prediction extrapolation is not as clean as cross section, but will still be a great improvement to the dead reckoning that MicroBooNE must do.

Corey Adams, Yale University
If MicroBooNE confirms the MiniBooNE excess as electrons, only with a near detector can we truly confirm an oscillation explanation - with complimentary analysis.

\[\bar{\nu}_\mu \rightarrow \bar{\nu}_X \rightarrow \bar{\nu}_e \]
\[\bar{\nu}_\mu \rightarrow \bar{\nu}_X \]
\[\bar{\nu}_\mu, e \rightarrow \bar{\nu}_X \]
\[\nu_e \text{ Appearance} \]
\[\nu_\mu \text{ Disappearance} \]
\[\text{Neutral Current Disappearance} \]
\(\nu_\mu \) Disappearance

- \(\nu_e \) appearance isn’t the only sterile neutrino signature, \(\nu_\mu \) disappearance is also promising - and complimentary.

- Only possible with ND - cross section and flux uncertainties are too high for one detector alone.

- Primary background is still pion production!

Corey Adams, Yale University
Charged Pion Background

Charged pions from NC interactions can mimic a muon.

If the pion decays before interacting hadronically, it is indistinguishable from a muon.

Pion interaction cross sections in Liquid Argon are important!

Corey Adams, Yale University
Conclusions

• Future experiments will mitigate the primary interaction systematic - pion production - through improved detector technology.

• Rate of pion production is important!

• Cross Section uncertainties on argon will play a big role - 2 detector experiments will allow reduction of these systematics.

• Resolving the question of sterile neutrinos with accelerator based experiments is only possible with a near detector.
Backup
ν_μ CC Background in the ν_e Sample?

Need to **not** ID the muon (tag it as a pion? Not see it?) and the event must have a shower.

Used a flat, 0.1% misID rate while we develop better estimates of this background.
Neutral Pions in LAr

ArgoNeuT Data

ArgoNeuT Data
The LSND Result

\[\bar{\nu}_e + p \rightarrow e^+ + n \]

Sterile Neutrino Sensitivity

A near detector on the Booster Beam Line can extend the reach of MicroBooNE by allowing cancellation of many systematic errors - particularly cross section uncertainties. Also allows high statistics, precision cross section measurements due to high flux.

see talk by R. Guenette