ArgoNeuT's Measurement of the Charged Current Inclusive Cross Section in the Low Energy NuMI Anti-neutrino mode Beam

> Eric Church, Yale University NuInt 2014, Surrey, UK

Liquid Argon Time Projection Chambers in the US

A LArTPC program following up on the work pioneered by ICARUS.

operational: 2007

Location: Yale University Location: Fermilab Active volume: 0.002 ton Active volume: 0.02 ton operational 2008

LAPD

Bo

Location: Fermilab Active volume:0.3 ton operational: 2008 First neutrinos: June 2009

MicroBooNE

Location Fermilab Active volume: 0.1 kton

LAr1ND

Cocation:Fermilab Location: Homestake Active volume: 1 kton Active volume: 10 kton Construction start: 2011 Construction start: 2016? Construction start 2020

Luke

Location: Fermilab Location:Fermilab Purpose: materials test st Purpose: LAr purity demo Operational: since 2008 Operational: 2011

Location:Fermilab Purpose:LArTPC calibration Operational:2014 (phase 1)

Location: LANL Purpose: LArTPC calibration Operational:2014

Location: Fermilab Purpose: purity demo Operational: 2013

This result

- This is the first cross-section measurement in Argon of anti-neutrinos. We also give a neutrino cross-section result at a new energy with respect to the previous ArgoNeuT result.
- These results are at an energy that bears directly on the future US neutrino detection program
- We show differential cross-sections in the kinematic variables characterizing the muon: its outgoing momentum and angle.
 arXiv:1404.4809

ArgoNeuT at Fermilab

- First TPC in a low energy (1-10 GeV) US neutrino beam ...
 - the Neutrinos-from-Main-Injector (NuMI) beam at Fermilab
- Uses the Minos Near Detector as a spectrometer

the ArgoNeuT detector

Cryostat Volume	500 Liters
TPC Volume	170 Liters
# Electronic Channels	480
Wire Pitch	4 mm
Electronics Style (Temperature)	JFET (293 K)
Max. Drift Length	47 cm
Light Collection	None

- We recirculate argon through a copper filter.
- A cryocooler is used to recondense boil-off gas.
- U and V wire planes

other ArgoNeuT talks at NuInt2014

Ornella Palamara

0-pion reactions and nuclear effects

Ed Santos

Coherent Charged Current measurement

Jonathan Asaadi

showers in LArTPCs

Fluxes

We use so-called SKZP MINOS flux: NuMI flux simulation plus FLUKA, tuned from NA49 data and Minos ND data and a +/- 11% flat systematic error.

Reconstruction

ArgoNeuT uses the LArSoft package: A FNAL-supported C++ framework, which is utilized by O(5) other LArTPC collaborations.

Track Matching with the MINOS ND

The MINOS collaboration graciously provides simulation and reconstruction of tracks in their Near Detector.

data

JINST 7 (2012) P10020

CC Inclusive event

Reconstruction: Hits, Clusters

 Hit and Cluster finding in this analysis uses one module that finds self-consistent hits in track-like clusters

Reconstruction 3: cluster pairing

Charge vs TDC

Hits in a candidate pair of clusters.

It is necessary to pair clusters across the two planes, from which coincident hits form 3D spacepoints. A 3D track runs through the spacepoints.

One forms a Kolmogorov statistic on the timing of hits in candidate cluster pairs and keeps those with a high likelihood of being proper pairs.

MC: truth vs reco

CC v_{μ} Z vertex recosim and truth (after cuts) 90 c Z truth (cm) 70E 60E 50 b 40F Z recosim (cm)

From the v sample

MC: angular and momentum resolution

From the v sample

MC: post-cuts spectra

Acceptance

Is there a CC track in ArgoNeuT that points roughly to any track in Minos ND?

Efficiency

Is there a CC track in ArgoNeuT that points accurately at a track in Minos ND with the desired sign?

Signal size

- Track vertex required to be reconstructed in the fiducial volume — 3-4 cm boundaries within the LAr TPC.
- Best matched track to MINOS ND, reconstructed, of proper sign.
- 1676 (1605) (anti-) neutrino events remain

Backgrounds

- Through-going, or "rock" muon events are removed from initial sample by a fiducial cut on the event's most upstream vertex (and a 5% further removal by a handscan).
- Neutral Current "punch-through" background is small due to MINOS ND matching requirement
- Wrong-sign CC background is small due to matching and correct-sign requirement.
- From MC: NC+WS bkgd is 97 (141) events for (anti-)neutrino sample.

Simulation: Ntracks

Ntracks mu+: data with GENIE expectations

MC-data histos: v

y vtx mu-: data with GENIE expectations

z vtx mu-: data with GENIE expectations

angle matching mu-: data with GENIE expectations

Pointing to a (-) trk in MINOS ND

dr matching mu-: data with GENIE expectations

MC-data histos: V

angle matching mu+: data with GENIE expectations

Pointing to a (+) trk in MINOS ND

differential cross-sections on

Systematics

- Uncertainties on the neutrino and antineutrino total cross sections get contributions from
 - flux (11%)
 - N_{Ar}, fiducial volume variations, POT (3%)
- The differential cross-sections receive further ~few-10 percent corrections in most bins from mismeasurement.
 - resulting mostly from incorrect match from
 - crowded environment
 - multiple coulomb scattering

Total Cross-Sections

-3 (+3) % correction for iso-scalar nucleus

Conclusions

- The first anti-neutrino cross-section measurement in Argon is presented. It is in a neutrino energy region where there aren't many other measurements on any nuclei.
- The results are important to the future US LArTPC program.
- Watch for more papers from ArgoNeuT!