# Measurement of $v_{\mu}$ CC inclusive cross section in the T2K on-axis neutrino beam

T. Kikawa (Kyoto University) for the T2K collaboration NuInt14 @Surrey May 19, 2014



#### Overview

- The T2K experiment
- Introduction to CC inclusive cross section
- Event selection
- Analysis strategy
- Systematic errors
- Results









#### The T2K experiment

- High intensity neutrino beam from J-PARC.
- Super-Kamiokande, located 295km from neutrino generation point.
- ND280 (off-axis) and INGRID (on-axis) located 280m from neutrino generation point.
- Precise measurement of neutrino oscillations.
- <u>Precise measurement of neutrino</u> <u>nucleus interactions at  $E_v \sim 1$ GeV.</u>



T2K Near detectors

**Off-axis**)

NGRD

(On-axis)

**ND280** 

#### **INGRID** (on-axis near detector)

- 16 standard modules.
  - Sandwich structure of iron and scintillators.
  - Main purpose is beam monitoring.
- 1 extra module, (Proton Module).
  - Full scintillator module.
  - Developed for the cross section study. Beam center





#### CC inclusive cross section

- CC inclusive cross section at a few GeV isn't well understood.
  - Nuclear effects of the neutrino target material is significant.
  - SciBooNE observed higher cross section than predictions.
- Cross section measurement for various target is important.
- We measured the flux averaged CC inclusive cross section on Fe and CH in a few GeV region with T2K on-axis neutrino beam.



#### CC inclusive cross section on Fe and CH

- Fe makes up 96.23% of the standard module by weight.
- CH makes up 98.57% of the Proton Module by weight.
- CC inclusive cross section on Fe and CH is measured from number of CC events in the central standard module and the Proton Module.
- CC inclusive cross section ratio on Fe to CH is measured using two detectors.
   → Large part of the systematic error is cancelled between two detectors on the same beam axis.



Elemental composition of neutrino target material by weight.

|                 | н     | С      | Ν      | 0     | Ті    | Fe     |
|-----------------|-------|--------|--------|-------|-------|--------|
| Standard module | 0.29% | 3.42%  | 0.003% | 0.03% | 0.03% | 96.23% |
| Proton Module   | 7.61% | 90.96% | 0.07%  | 0.59% | 0.76% | 0      |

#### Neutrino interaction models used in T2K

- NEUT and GENIE are used to generate neutrino interactions.
- Common models used in NEUT and GENIE:
  - Quasi-elastic scattering : Llewellyn Smith formalism
  - Resonant pion production : Rein-Sehgal model \_\_\_\_\_
  - Coherent pion production : Rein-Sehgal model
  - Deep inelastic scattering : GRV98 PDF
- Differences between NEUT and GENIE:
  - Default values of  $M_A$ .
  - Treatment of nuclear effect.
  - Non-resonant process at low W.
  - Lepton mass term in coherent pion production.
- NEUT was used to estimate background and efficiency.
- GENIE was used only for the comparison of cross section results in addition to NEUT.



Default values of  $M_A$ 

**GENIE** 

 $0.99 \text{GeV/c}^2$ 

 $1.12 \text{GeV/c}^2$ 

**NEUT** 

 $1.21 \text{GeV/c}^2$ 

 $1.21 \text{GeV/c}^2$ 

 $M^{QE}_{\Lambda}$ 

 $M^{RES}_{\Lambda}$ 

/

#### **Event selection**

- Reconstruct tracks and vertices.
- Select the events whose vertices are in the fiducial volume.
- Additionally, require the Proton Module track to be matched with standard module track.→ Select long muon track from CC.
- After the event selection,
  - Purity of CC interactions on Fe is 86.6% for standard module.
  - Purity of CC interactions on CH is 89.4% for the Proton Module.



#### Difference in selection efficiency

- Selection efficiency for standard module is largely different from that for the Proton Module.
- It comes from the difference in acceptance due to the track matching required for the Proton Module.
- The difference should be reduced for the precise measurement of the CC inclusive cross section ratio on Fe to CH.



### **Difference in selection efficiency**

- Define an imaginary module behind the standard module.
- Require standard module track to reach the imaginary module.
- After this acceptance cut, difference in selection efficiency becomes smaller.

Selection efficiency

0.9

0.3

0.2

0.1



Imaginary module

Acceptance cut for standard module

Standard module

#### Analysis strategy

 Flux averaged CC-inclusive cross section is calculated with background subtraction and efficiency correction.

$$\sigma_{CC} = \frac{N_{sel} - N_{BG}}{\Phi T \varepsilon_{CC}}$$

- $\begin{array}{l} N_{sel} : \text{Number of selected events (data)} \\ N_{BG} : \text{Number of selected BG events (MC)} \\ \Phi : \text{Integrated } \nu_{\mu} \text{ flux (MC)} \\ T : \text{Number of target nucleons} \\ \varepsilon_{CC} : \text{Detection efficiency of CC events (MC)} \end{array}$
- This calculation is applied to the standard module and the Proton Module to estimate  $\sigma_{CC}^{Fe}$  and  $\sigma_{CC}^{CH}$ .
- Then  $\sigma_{CC}^{Fe}/\sigma_{CC}^{CH}$  is calculated.

Neutrino interactions on scintillator(CH) of the standard module or those on reflector(TiO<sub>2</sub>) of the Proton Module.

Caused by particles generated by neutrino interactions on surrounding materials.

MC expected background ratio to all selected events

|   |                     | $\sigma^{Fe}_{CC}$ | $\sigma^{CH}_{CC}$ |
|---|---------------------|--------------------|--------------------|
|   | NC events           | 6.44%              | 4.19%              |
|   | $ar{ u}_\mu$ events | 2.04%              | 2.39%              |
|   | $v_e$ events        | 0.99%              | 0.73%              |
| > | Target element      | 2.67%              | 1.39%              |
| 7 | External            | 0.82%              | 5.87%              |

#### Neutrino flux uncertainty

- Source of the flux uncertainty:
  - Hadron interaction uncertainties.
  - T2K beamline uncertainties.
     (proton beam position, proton beam intensity, neutrino beam direction, horn current, alignment).
- Total neutrino flux uncertainty is ~10%.
- Hadron interaction uncertainty is dominant error source.





#### Systematic error from neutrino flux

- Systematic error is evaluated by toy MC generated from the covariance matrix.
- Systematic error from flux for  $\sigma_{CC}^{Fe}$  and  $\sigma_{CC}^{CH}$  is ~10%.
- That for  $\sigma_{CC}^{Fe}/\sigma_{CC}^{CH}$  is about ~0.3% thanks to the large correlation between the variations of  $\sigma_{CC}^{Fe}$  and  $\sigma_{CC}^{CH}$ .



40

30 20

10

-10

-20

-30

10

Neutrino flux error covariance

01 (GeV)

## Systematic error from neutrino interaction

**Model** parameters

Ad hoc parameters

- Fit the external data with free model parameters in NEUT.
- Introduce ad hoc parameters to take into account remaining differences between data and NEUT.
- Estimate values and errors of the model and ad hoc parameters.
- Introduce, additional FSI (final state interaction) uncertainties.

|   | Parameter                                | Value    | Error  |
|---|------------------------------------------|----------|--------|
| - | $M_A^{QE}$                               | 1.21GeV  | 16.53% |
|   | $M_A^{RES}$                              | 1.21GeV  | 16.53% |
|   | $\pi$ -less $\Delta$ decay               | 0.2      | 20%    |
|   | Spectral function                        | 0        | 100%   |
|   | Fermi momentum (CH)                      | 217MeV/c | 13.83% |
|   | Binding energy (CH)                      | 25MeV    | 36%    |
| - | CCQE norm. ( $E_{ m v} < 1.5 { m GeV}$ ) | 1        | 11%    |
|   | CCQE norm. (1.5 < $E_{\nu}$ < 3.5GeV)    | 1        | 30%    |
|   | CCQE norm. ( $E_{\nu} > 3.5 { m GeV}$ )  | 1        | 30%    |
|   | CC1 $\pi$ norm. ( $E_{ m v}$ < 2.5GeV)   | 1        | 21%    |
|   | CC1 $\pi$ norm. ( $E_{\nu}$ > 2.5GeV)    | 1        | 21%    |
|   | CC coherent $\pi$ norm.                  | 1        | 100%   |
|   | CC other shape                           | 0        | 40%    |
|   | NC1 $\pi^0$ norm.                        | 1        | 31%    |
|   | NC coherent $\pi$ norm.                  | 1        | 30%    |
|   | NC1 $\pi^{\pm}$ norm.                    | 1        | 30%    |
|   | NC other norm                            | 1        | 30%    |
|   | W shape                                  | 8.77MeV  | 52%    |
|   | $CC1\pi^+$ shape                         | 0        | 50%    |

14

- Detector error:
  - Error sources: target mass, dark count, hit detection efficiency, event pileup.
  - Additional data-MC discrepancy in each event selection step is included as the detector error.
- Flux error is dominant for the absolute CC inclusive cross section measurement.
- Systematic error for the cross section ratio on Fe to CH is very small.

|                            | $\sigma_{CC}^{Fe}$ | $\sigma^{CH}_{CC}$ | $\sigma^{Fe}_{CC}/\sigma^{CH}_{CC}$ |
|----------------------------|--------------------|--------------------|-------------------------------------|
| Neutrino flux              | -10.34%+12.74%     | -10.12%+12.48%     | <u>-0.31%+0.31%</u>                 |
| Neutrino interaction + FSI | -3.50%+3.42%       | -3.67%+3.68%       | -1.56%+1.63%                        |
| Detector response          | ±1.11%             | $\pm 1.71\%$       | ±2.04%                              |
| Total                      | -10.97%+13.24%     | -10.90%+13.12%     | <u>-2.59%+2.63%</u>                 |

#### Summary of systematic errors

#### Flux averaged CC inclusive cross section result

16

- Flux averaged CC inclusive cross sections on Fe and CH are  $\sigma_{CC}^{Fe} = (1.444 \pm 0.002(stat.)_{-0.159}^{+0.191}(syst.)) \times 10^{-38} \text{ cm}^2/\text{nucleon}$  $\sigma_{CC}^{CH} = (1.379 \pm 0.009(stat.)_{-0.150}^{+0.181}(syst.)) \times 10^{-38} \text{ cm}^2/\text{nucleon}$  at mean energy of 1.51GeV.
- They agree well with predictions.
- Our result on Fe is the first result on Fe in a few GeV region.
- Our result on CH is smaller than the SciBooNE result.



#### CC inclusive cross section ratio result

- CC inclusive cross section ratio on Fe to CH is  $\frac{\sigma_{CC}^{Fe}}{\sigma_{CC}^{CH}} = 1.047 \pm 0.007(stat.)_{-0.027}^{+0.028} (syst.)$ at mean energy of 1.51GeV.
- It agrees well with prediction.
- Target dependence is understood and controlled at the ~2% level.



#### Energy dependent CC-inclusive cross section with INGRID

- Additional ongoing study using INGRID.
- Neutrino energy spectrum on each INGRID module is different.
- Categorize events by module group.
- In addition, categorize events by topology group.
- Fit the MC model to the numbers of events in the groups to extract CC-inclusive cross section in bins of  $E_{\nu}$ .



#### Summary

- Flux averaged CC inclusive cross section on Fe and CH and their cross section ratio at mean energy of 1.51GeV were measured using T2K on-axis neutrino detector, INGRID.
- Cross section results agree well with model predictions.
- Our result on Fe is the first result on Fe in a few GeV region.
- Our result on CH is smaller than the SciBooNE result.
- Target dependence is understood and controlled in  $\sim$ 2% level.
- Paper will be submitted to Physical Review D soon.
- Energy dependent measurement is ongoing.
- Other results from T2K INGRID.
  - CCQE (May 21).
  - CC coherent pion (May 23).