numu and nue CC inclusive cross-sections using ND280

Ben Smith (for the T2K collaboration) Imperial College London NuInt14 – 19 May 2014

Imperial College nue CC inclusive using ND280 - Ben Smith

Contents

- \mathbf{v}_{e}
 - Why electron neutrinos?
 - Event selections
 - Unfolding method
 - Uncertainties
 - Differential cross-section results
 - Total cross-section results
- νμ
 - Reminder of published results

Why electron neutrinos?

- CC v_e interactions are signal and largest background in $v_{\mu} \rightarrow v_e$ appearance measurements
- Understanding differences between v_{μ} and v_{e} cross-sections is critical for reducing systematics in future LBL experiments
- Theoretical differences need to be constrained with data!

Example change $ u_{\mu}$ CCQE x-sec	e in fractional difference between $\nu_{\rm e}$ and s, Day and McFarland, arXiv:1206.6745
nperial College	nue CC inclusive using ND280 - Ben Smi

Category	Events	
CC v_e signal	17.3	
CC ν_{e} background	3.2	
Other background	1.1	
T2K MC prediction for $sin^2(2\theta_{13}) = 0.1$ arXiv:1311.4750		

h

Goal of this analysis

- Gargamelle published $\nu_{\rm e}$ and anti- $\nu_{\rm e}$ CC inclusive cross-section in 1978
- This analysis measures $\nu_{\rm e}$ CC inclusive cross-section on carbon
 - Differential as a function of
 - Electron momentum
 - Electron angle

Imperial College

London

- Q² of interaction
- Total flux-averaged cross-section

Gargamelle $\nu_{\rm e}$ and anti- $\nu_{\rm e}$ CC inclusive measurements, Nucl. Phys. B 133, 1978

nue CC inclusive using ND280 - Ben Smith

Event selection

- Analysis uses T2K off-axis near detector ND280
 - FGDs active targets (plastic scintillator) 2 x 2 x 0.3 m³
 - TPCs give excellent momentum resolution and particle identification (PID)
 - ECals help with PID
- Use all good data from 2010–2013: 5.9e20 POT

Imperial College

London

- Signal events are CC $\nu_{\rm e}$ interactions in upstream FGD

19/05/2014

Event selection

Sample event displays

- Two events passing the $\nu_{\rm e}$ event selection

Imperial College nue CC inclusive using ND280 - Ben Smith London

19/05/2014 T2K

Event properties

- Sample is 65% pure CC v_e interactions
- Not uniform acceptance!
- Large background from γ→e⁺e⁻ conversions

Category	Fraction (%)	Expected #
v_e CCQE	25.2	95.0
v_{e} CCnonQE	39.8	150.0
γ background	23.8	89.8
μ background	4.1	15.5
Other background	7.1	26.8

Gamma background

- 24% of events in v_e sample are from $\gamma \rightarrow e^+e^-$ conversions
- Select a sample of e⁺e⁻ pairs starting in FGD1 to constrain this background
- Sample is 95% pure in γ pair conversions

Bayesian unfolding method

- Use MC to create smearing matrix linking reconstructed and true variables – this gives P(RecoBin TrueBin)
- Uses Bayes' theorem to find P(TrueBin|RecoBin), and unfold data to the true distribution estimate
- t_k is true bin; r_j is reco bin; m is iteration (but we only do 1)

19/05/2014

Imperial College nue CC inclusive using ND280 - Ben Smith

10

- Flux simulated using FLUKA2008, then tuned based on NA61 hadron production data
- NEUT version 5.1.4.2, then tuned based on MiniBooNE $CC1\pi$ data
- GEANT-based MC to model ND280 detector response
- Background is constrained using data see later in talk
- Signal efficiencies and priors completely depend on MC
 - Introduces dependency on MC model used
 - Studies show the effect is small

Imperial College

London

nue CC inclusive using ND280 - Ben Smith

- Significant smearing in momentum (and Q²) due to bremsstrahlung
 - TPC information dominates the momentum estimate
 - If photon is emitted in FGD1 (before electron reaches TPC), TPC measures the "wrong" (lower) momentum

nue CC inclusive using ND280 - Ben Smith

Imperial College

London

19/05/2014

- Low selection efficiency at low momentum and high/ backwards angles
- Relies on the MC model to unfold into these "unseen" regions

19/05/2014

Introduces more model-dependency to the result

Imperial College

London

nue CC inclusive using ND280 - Ben Smith

Reduced phase-space

- Can reduce model-dependency by only looking at regions with good efficiency
 - Reconstructed momentum > 550 MeV/c
 - Reconstructed $\cos(\theta) > 0.72$
- Only events passing BOTH these criteria are considered in the "reduced phase-space" analysis
 - No attempt is made to unfold into the "unseen" regions
- Results for both the full and reduced phase-spaces will be presented

$P_m(t_k|r_j) = \frac{P(r_j|t_k)P_m(t_k)}{\sum\limits_{\alpha=1}^{n_t} P(r_j|t_\alpha)P_m(t_\alpha)} \quad N_{t_k}^{m+1} = \frac{1}{\epsilon_{t_k}} \sum\limits_{j=1}^{n_r} P_m(t_k|r_j)(N_{r_j}^{meas} - B_{r_j})$ Background Subtraction

- Use the γ sample to constrain part of the background
- Events where the neutrino interacts Outside Of the Fiducial Volume (OOFV) are least well understood

15

• Use γ sample to re-weight OOFV events in $\nu_{\rm e}$ sample

Uncertainties

- Uncertainties calculated using covariance matrix method
- Create separate covariance matrices for
 - Data statistics
 - MC statistics
 - Detector

16

- Flux and cross-section
- Background subtraction technique
- 1000 throws for each, affecting both v_e and γ samples

19/05/2014

Imperial College nue CC inclusive using ND280 - Ben Smith

Uncertainties

- Detector systematics
 - TPC, FGD, ECal and external systematics
 - Computed using special samples (cosmic rays, through-going muons, electrons entering the ECal etc)
- Flux systematics

Imperial College

London

- Based on beam measurements, NA61 data and other external hadron production data
- Cross-section systematics
 - Common systematics for all analyses in T2K
 - Based on external data and theoretical motivations
- See arXiv:1403.2552 for full details of all these

Differential cross-section results

Total cross-section result

- Good agreement with both NEUT and GENIE, given current uncertainties
- Largest uncertainties are
 - Flux (12.9%)

Imperial College

London

- Statistics (8.7%)
- Detector (8.4%)

The other flavour

- Double differential v_{μ} CC inclusive cross-section published last year in PRD (arXiv:1302.4908)
- Agreed with both NEUT and GENIE

20

• ND280 are currently focussing on exclusive channels, so no v_{μ} inclusive update this year $r_{23.5}^{10^{38}}$

- Theoretical differences are expected between ν_{μ} and ν_{e} cross-sections
- Constraining these with data is critical to reducing systematic uncertainties, as LBL experiments search for CP violation
- ND280 has measured the $\nu_{\rm e}$ CC inclusive cross-section on carbon
- Results in good agreement with both NEUT and GENIE

Imperial College nue CC inclusive using ND280 - Ben Smith

Imperial College nue CC inclusive using ND280 - Ben Smith

22

Uncertainties (%)

Total uncertainty in each Q² bin

$Q^2~({ m GeV}^2/c^4)$	Data stat.	MC stat.	Detector	Flux	X-sec	OOFV	Total
0.00-0.03	30.8	8.9	19.6	17.6	18.9	8.2	46.3
0.03–0.06	19.7	6.9	13.6	15.1	11.3	6.3	31.9
0.06 - 0.10	15.3	5.3	11.6	14.2	9.7	4.9	26.7
0.10 - 0.16	12.4	4.6	9.4	13.3	7.5	3.8	22.6
0.16 - 0.24	10.0	4.1	7.9	12.6	8.2	2.5	20.4
0.24 – 0.36	9.1	3.7	8.0	12.6	8.1	2.3	19.6
0.36 – 0.58	8.6	3.2	7.7	12.5	6.4	1.7	18.6
0.58 – 1.00	9.1	3.3	7.6	12.5	4.9	1.4	18.2
> 1.00	11.7	4.0	8.9	13.2	7.9	1.6	21.9
Total	8.7	2.3	8.4	12.9	5.3	2.1	18.7

Uncertainty on total CCinc x-sec for each systematic

Imperial College London

23

nue CC inclusive using ND280 - Ben Smith

Total uncertainty on total CCinc x-sec

19/05/2014

Statistical uncertainty

- Data statistics
 - Poisson vary contents of each bin in nue and gamma samples
- MC statistics
 - Separately vary the nue, gamma and other components of the nue and gamma samples

Detector systematics

- Use data to constrain all systematics
 - Events outside ND280 Entering the selection Pile-up affecting veto cuts

25

London

TPCs B-field distortion Charge confusion Momentum resolution Cluster efficiency Track efficiency PID (e, mu/pi, p)

FGDs

Mass Track efficiency Michel electron efficiency TPC-FGD matching Pion secondary interactions

ECals PID Energy resolution Energy scale TPC-ECal matching

Flux systematics

- Consider 5 sources of uncertainty
- Compute covariance matrix for near-far extrapolation, but only use ND280 part for this analysis

26

- CCQE: Llewellyn-Smith with Smith-Moniz Fermi gas model for nucleus
- CC1π: Rein-Sehgal resonance model

27

- DIS and CCnπ: GRV98 PDF with Bodek-Yang correction
- FSI: Cascade model (track secondary particles until they exit nucleus)

X-sec systematics

Pion scattering data Electron scattering data MiniBooNE MiniBooNE / NOMAD K2K / SciBooNE Other

28

Parameter	Nominal value	Uncertainty	Category
$F_1^{ m Inel}$	0.00	0.41	FSI
$F_2^{ m Inel}$	0.00	0.34	FSI
F^{Prod}	0.00	0.57	FSI
$F^{ m Abs}$	0.00	0.28	FSI
F_1^{CX}	0.00	0.50	FSI
$F_2^{ m CX}$	0.00	0.41	FSI
$M_A^{ m QE}~({ m GeV}/c^2)$	1.21	0.45	CCQE
$M_A^{ m RES}~({ m GeV}/c^2)$	1.41	0.11	Pion production
$x^{ m CC \ other} \ ({ m GeV})$	0.00	0.40	Pion production
$x^{ m SF}$	0.00	1.00	Nuclear
E_B (MeV)	25.00	9.00	Nuclear
$p_F~({ m MeV}/c)$	217.00	30.00	Nuclear
$x^{\pi ext{-less}}$	0.20	0.20	Pion production
$x_1^{ m QE}$	1.00	0.11	CCQE
$x_2^{ m QE}$	1.00	0.30	CCQE
$x_3^{ m QE}$	1.00	0.30	CCQE
$x_1^{{ m CC1}\pi}$	1.15	0.43	Pion production
$x_2^{ ext{CC1}\pi}$	1.00	0.40	Pion production
$x^{ m CC~coh.}$	1.00	1.00	Pion production
$x^{ m NC~other}$	1.00	0.30	Pion production
$x^{{ m NC1}\pi^0}$	0.96	0.43	Pion production

Imperial College London

nue CC inclusive using ND280 - Ben Smith

19/05/2014 **T2**

OOFV systematic

19/05/2014

- Exact source of lower OOFV background is not fully understood
- To be conservative, want to enlarge the systematic beyond just the statistics of the gamma sample
- Treat the data/MC difference as a 3σ uncertainty

29

Restricted phase-space

- Good agreement with both NEUT and GENIE
- Note that the full T2K flux is used in the fluxaveraging, including the low-energy part that doesn't create electrons with p > 550 MeV

Imperial College

London

30

A second slide about numu

- v_{μ} flux is lower energy than v_{e} flux comparison between results is not trivial!
- v_{μ} mean energy is 0.85 GeV

31

·	Model/result	σ (x10 ⁻³⁹ cm ² /nucleon)
	NEUT nominal	7.27
	GENIE nominal	6.54
	T2K data	6.91 ± 0.13 (stat) ± 0.84 (syst)
v_e mean energy is 1.34 GeV		
0	Model/result	σ (x10 ⁻³⁸ cm ² /nucleon)

NEUT nominal 1.23

GENIE nominal 1.08

T2K data

Imperial College

London

1.11 ± 0.10 (stat) ± 0.18 (syst)

nue CC inclusive using ND280 - Ben Smith

19/05/2014