IY Prod. η Prod YK Prod. IK Prod. Conclusion

Strange Particle Production with Neutrinos Mohammad Sajjad Athar¹

M Rafi Alam¹ S Chauhan¹ S K Singh¹ I Ruiz Simo² L Alvarez-Ruso³ M J Vicente Vacas³

¹Aligarh Muslim University, India

²University of Granada, Spain

³University of Valencia & IFIC, Spain

NuInt'2014, Surrey, UK

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Duccassos				

Processes

Single Hyperon Production

$$ar{
u}_{\mu}p
ightarrow \mu^+ \Sigma^0 \ ar{
u}_{\mu}p
ightarrow \mu^+ \Lambda \ ar{
u}_{\mu}n
ightarrow \mu^+ \Sigma^-$$

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Processes				

Single Hyperon Production

$$ar{
u}_{\mu}p
ightarrow \mu^{+}\Sigma^{0} \ ar{
u}_{\mu}p
ightarrow \mu^{+}\Lambda \ ar{
u}_{\mu}n
ightarrow \mu^{+}\Sigma^{-}$$

Eta Production

$$u_{\mu}n \rightarrow \mu^{-}p\eta \qquad \bar{\nu}_{\mu}p \rightarrow \mu^{+}n\eta$$

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Processes				

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Processes				

Single Kaon Production ($\Delta S = 1$)

$$egin{aligned} &
u_\mu p & o \mu^- K^+ p & &
ar
u_\mu p & o \mu^- K^0 p & &
ar
u_\mu p & o \mu^+ \overline{K}^0 n & &
ar
u_\mu p & o \mu^+ \overline{K}^0 n & &
ar
u_\mu n & o \mu^- K^+ n & &
ar
u_\mu n & o \mu^+ K^- n & &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n &
ar
u_\mu n & o \mu^+ K^- n & ar
u_\mu n &
ar
u_\mu n & o \mu^+ K^- n & ar
u_\mu n & ar
u_$$

2 / 63

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion
Outline				

2 Eta Production

3 Associated Production

A Single Kaon Production

5 Conclusion

Generally, these processes are Cabibbo suppressed as compared to the $\Delta S = 0$ associated production of hyperons. However, for $E_{\bar{\nu}} < 2$ GeV, the associated production of hyperons is kinematically suppressed by the phase space.

1Y Prod.	ן Prod	YK Prod.	1K Prod.	Conclusion

Transition matrix element

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} \sin \theta_c l^\mu J_\mu$$

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

Transition matrix element

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} \sin \theta_c l^\mu J_\mu$$

 l^{μ} is leptonic current and $J_{\mu}(\Delta S = 1)$ is the strangeness changing hadronic current

$$J_{\mu} = \langle Y(p') | V_{\mu} - A_{\mu} | N(p) \rangle$$

Vector and Axial Vector Currents

$$\langle Y(p')|V_{\mu}|N(p)\rangle = \bar{u}_{Y}(p') \left[\gamma_{\mu}f_{1} + i\sigma_{\mu\nu}\frac{q^{\nu}}{M+M_{Y}}f_{2} + \frac{f_{3}}{M+M_{Y}}q^{\mu} \right] u_{N}(p)$$

$$\langle Y(p')|A_{\mu}|N(p)\rangle = \bar{u}_{Y}(p') \left[\gamma_{\mu}\gamma_{5}g_{1} + i\sigma^{\mu\nu}\gamma_{5}\frac{q^{\nu}}{M+M_{Y}}g_{2} + \frac{g_{3}}{M+M_{Y}}q_{\mu}\gamma_{5} \right] u_{N}(p)$$

The six form factors $f_i(q^2)$ and $g_i(q^2)$ (i = 1, 2, 3) are determined using following assumptions about the weak vector and axial vector currents in weak interactions:

(a) The assumptions of T invariance implies that all the form factors $f_i(q^2)$ and $g_i(q^2)$ are real.

The six form factors $f_i(q^2)$ and $g_i(q^2)$ (i = 1, 2, 3) are determined using following assumptions about the weak vector and axial vector currents in weak interactions:

(b) Assumed that $\Delta S = 0$ and $\Delta S = 1$ weak currents along with the electromagnetic currents transform as octet representation under SU(3).

The six form factors $f_i(q^2)$ and $g_i(q^2)$ (i = 1, 2, 3) are determined using following assumptions about the weak vector and axial vector currents in weak interactions:

(c) $f_i(q^2) (g_i(q^2))$ occurring in the matrix element of vector(axial vector) current is written in terms of two functions $D(q^2)$ and $F(q^2)$ corresponding to symmetric octet(8^S) and antisymmetric octet(8^A) couplings of octets of vector(axial vector) currents.

The six form factors $f_i(q^2)$ and $g_i(q^2)$ (i = 1, 2, 3) are determined using following assumptions about the weak vector and axial vector currents in weak interactions:

(*d*) The assumption of SU(3) symmetry and G invariance together implies absence of second class currents leading to

$$f_3(q^2) = g_2(q^2) = 0$$

 IY Prod.
 η Prod
 YK Prod.
 IK Prod.
 Conclusion

 FF
 $p \rightarrow \Sigma^0$ $p \rightarrow \Lambda$

$$\begin{array}{c|cccc} FF & p \to \Sigma^{0} & p \to \Lambda \\ \hline f_{1}(q^{2}) & \frac{-1}{\sqrt{2}}(f_{1}^{p}(q^{2}) + 2f_{1}^{n}(q^{2})) & -\sqrt{\frac{3}{2}}f_{1}^{p}(q^{2}) \\ \hline f_{2}(q^{2}) & \frac{-1}{\sqrt{2}}(f_{2}^{p}(q^{2}) + 2f_{2}^{n}(q^{2})) & -\sqrt{\frac{3}{2}}f_{2}^{p}(q^{2}) \\ \hline g_{1}(q^{2}) & \frac{-1}{\sqrt{2}}\frac{D-F}{D+F}g_{A}(q^{2}) & \frac{D+3F}{\sqrt{6}(D+F)}g_{A}(q^{2}) \end{array}$$

F and D are determined from the semileptonic decays and are taken as 0.463 and 0.804 respectively.

$$\begin{split} f_1^{p,n}(q^2) &= \frac{1}{1 - \frac{q^2}{4M^2}} \left[G_E^{p,n}(q^2) - \frac{q^2}{4M^2} G_M^{p,n}(q^2) \right] \\ f_2^{p,n}(q^2) &= \frac{1}{1 - \frac{q^2}{4M^2}} \left[G_M^{p,n}(q^2) - G_E^{p,n}(q^2) \right] \end{split}$$

10

8

0

0.5

 σ vs $E_{\bar{\nu}_{\mu}}$, for $\bar{\nu}_{\mu} + p \rightarrow \mu^{+} + \Lambda$ process.

0°

n

••••• Wu et al. (x 3) —•• Finiord et al.

6

 σ vs $E_{\bar{\nu}_{\mu}}$, for $\bar{\nu}_{\mu} + p \rightarrow \mu^+ + \Sigma^0$ process.

 $E_{\overline{v}}$ (GeV)

1.5

C.H. Llewellyn Smith, Phys. Rep. 3C, 261 (1972)

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion
000000				

INSIDE NUCLEUS

- Fermi motion and Pauli blocking effects of initial nucleons are considered.
- The Fermi motion effects are calculated in a local Fermi gas model, and the cross section is evaluated as a function of local Fermi momentum $p_F(r)$ and integrated over the whole nucleus.

Differential scattering cross section

$$\frac{d\sigma}{dQ^2 dE_l} = 2 \int d^3r \int \frac{d^3p}{(2\pi)^3} n_N(p,r) \left[\frac{d\sigma}{dQ^2 dE_l}\right]_{\text{free}}$$

Phys. Rev. D 88, 077301 (2013) Phys. Rev. D 74, 053009 (2006).

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

FINAL STATE INTERACTION(FSI) EFFECT

The produced hyperons are further affected by the FSI within the nucleus through the hyperon-nucleon quasielastic and charge exchange scattering processes like

•
$$\Lambda + n \rightarrow \Sigma^- + p$$
,

•
$$\Lambda + n \rightarrow \Sigma^0 + n$$
,

•
$$\Sigma^- + p \to \Lambda + n$$
,

•
$$\Sigma^- + p \rightarrow \Sigma^0 + n$$
, etc.

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

FINAL STATE INTERACTION(FSI) EFFECT

The produced hyperons are further affected by the FSI within the nucleus through the hyperon-nucleon quasielastic and charge exchange scattering processes like

- $\Lambda + n \rightarrow \Sigma^- + p$,
- $\Lambda + n \rightarrow \Sigma^0 + n$,
- $\Sigma^- + p \rightarrow \Lambda + n$,
- $\Sigma^- + p \rightarrow \Sigma^0 + n$, etc.

This has been taken into account by using a MC code where Y-N scattering xsec is the basic input, the details of the prescription is given in **PRD 74, 053009, 2006**.

 $0 \frac{1}{0} \frac{1}{0.5} \frac{1}{1.5} \frac{1}{2} \frac{1}{2.5}$

σ vs $E_{\bar{\nu}_{\mu}}$ in ¹²*C* for quasielastic hyperon production.

σ vs $E_{\bar{\nu}_{\mu}}$ in ⁴⁰*Ar* for quasielastic hyperon production.

l 1.5 E _{-v}(GeV)

0.5

12 / 63

IY Prod. η Prod YK Prod. 1K Prod. Conclusion

•
$$\Lambda + p \rightarrow \Sigma^+ + n$$
,
• $\Sigma^0 + p \rightarrow \Sigma^+ + n$

σ vs $E_{\bar{\nu}_{\mu}}$ for Σ⁺ production.

 Q^2 distribution at $E_{\bar{v}} = 2GeV$ for $\bar{v}_{\mu} + p \rightarrow \mu^+ + \Lambda$ process.

 Q^2 distribution at $E_{\bar{v}} = 2GeV$ for $\bar{v}_{\mu} + p \rightarrow \mu^+ + \Sigma^0$ process.

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

HYPERON GIVING RISE TO PIONS

As the decay modes of hyperons to pions is highly suppressed in the nuclear medium(E Oset et al. Phys. Rep. **188**, 79 1990), making them live long enough to pass through the nucleus and decay outside the nuclear medium.

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

HYPERON GIVING RISE TO PIONS

As the decay modes of hyperons to pions is highly suppressed in the nuclear medium(E Oset et al. Phys. Rep. **188**, 79 1990), making them live long enough to pass through the nucleus and decay outside the nuclear medium.

Therefore, the produced pions are less affected by the strong interaction of nuclear field, and their FSI have not been taken into account.

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion
000000				
1pi Prod.				

Pion Production through Δ *excitation*

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion
000000				
1pi Prod.				

Pion Production through Δ *excitation*

$$\begin{split} \bar{\mathbf{v}}_l(k) + N(p) & \to l^+(k') + \Delta(p_\Delta) \\ & \searrow N'(p') + \pi(k_\pi) \end{split}$$

Cross Section in local density approximation

$$\sigma = \frac{1}{(4\pi)^5} \int_{r_{min}}^{r_{max}} \rho_N(r) d\vec{r} \int_{Q^2_{min}}^{Q^2_{max}} dQ^2 \int_{k'_{min}}^{k'_{max}} dk' \int_{-1}^{+1} d\cos\theta_{\pi} \\ \times \int_0^{2\pi} d\phi_{\pi} \frac{\pi |\vec{k}'| |\vec{k}_{\pi}|}{M E_v^2 E_l} \frac{1}{E'_p + E_{\pi} \left(1 - \frac{|\vec{q}|}{|\vec{k}_{\pi}|} \cos\theta_{\pi}\right)} \bar{\Sigma} \Sigma |\mathcal{M}_{fi}|^2,$$

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion
000000				
1pi Prod.				

Pion Production through Δ *excitation*

$$\begin{split} \bar{\mathbf{v}}_l(k) + N(p) & \to l^+(k') + \Delta(p_\Delta) \\ & \searrow N'(p') + \pi(k_\pi) \end{split}$$

Cross Section in local density approximation

$$\sigma = \frac{1}{(4\pi)^5} \int_{r_{min}}^{r_{max}} \rho_N(r) d\vec{r} \int_{Q_{min}^2}^{Q_{max}^2} dQ^2 \int_{k'_{min}}^{k'_{max}} dk' \int_{-1}^{+1} d\cos\theta_\pi \times \int_0^{2\pi} d\phi_\pi \ \frac{\pi |\vec{k}'| |\vec{k}_\pi|}{M E_v^2 E_l} \frac{1}{E'_p + E_\pi \left(1 - \frac{|\vec{q}|}{|\vec{k}_\pi|} \cos\theta_\pi\right)} \bar{\Sigma} \Sigma |\mathcal{M}_{fi}|^2,$$

Eur. Phys. J. A **43**, 209 (2010). J. Phys. G **37**, 015005 (2010).

Eur. Phys. J. A 43, 209 (2010).

 Q^2 distribution (a) for $\bar{\nu}_{\mu}$ induced reaction in ${}^{12}C$ averaged over the MiniBooNE flux and (b & c) for ${}^{16}O$ averaged over the SuperK flux for e^+ & μ^+ . The results are presented for the incoherent π^- production with medium effect and pion absorption, and for the π^- production from the quasielastic hyperon production

 Q^2 distribution (a) for $\bar{\nu}_{\mu}$ induced reaction in ${}^{12}C$ averaged over the MiniBooNE flux and (b & c) for ${}^{16}O$ averaged over the SuperK flux for e^+ & μ^+ . The results are presented for the incoherent π^- production with medium effect and pion absorption, and for the π^- production from the quasielastic hyperon production **scaled by a factor of 2.5** i.e $\sim 40\%$ Phys. Rev. D **88**, 077301 (2013)

19 / 63

 Q^2 distribution (a) for \bar{v}_{μ} induced reaction in ${}^{12}C$ averaged over the MiniBooNE flux and (b & c) for ${}^{16}O$ averaged over the SuperK flux for $e^+ \& \mu^+$. The results are presented for the incoherent π^0 production with medium effect and pion absorption, and for the π^- production from the quasielastic hyperon production

 ϱ^2 distribution (a) for \bar{v}_{μ} induced reaction in ${}^{12}C$ averaged over the MiniBooNE flux and (b & c) for ${}^{16}O$ averaged over the SuperK flux for $e^+ \& \mu^+$. The results are presented for the incoherent π^0 production with medium effect and pion absorption, and for the π^- production from the quasielastic hyperon production **scaled by a factor of 1.3** i.e $\sim 30\%$ Phys. Rev. D **88**, 077301 (2013)

20 / 63

Lepton energy distributions for π^- production.

Lepton energy distributions for π^- production.

scaled by a factor of 2.5 i.e $\sim 40\%$

Lepton energy distributions for π^0 production.

Lepton energy distributions for π^0 production. scaled by a factor of 1.3 i.e $\sim 30\%$

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Outline				

2 Eta Production

3 Associated Production

4 Single Kaon Production

5 Conclusion

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

- N(1535) $I (J^P) \frac{1}{2} (\frac{1}{2})$
- N(1650) $I (J^P) \frac{1}{2} (\frac{1}{2})$

1Y Prod. η Prod YK Prod. 1K Prod. Conclusion

Photoproduction of Eta Mesons

$$\gamma(q) + p(p) \rightarrow p(p') + \eta(p_2)$$

Cross section in lab frame:

$$d\sigma = (2\pi)^4 \delta^4 (p_{\eta} + p' - q - p) \frac{1}{4q_0 M} \frac{d^3 p_n}{(2\pi)^3 2E_{\eta}} \frac{d^3 p'}{(2\pi)^3 2E'} \overline{\sum} |\mathcal{M}_r^{(s)}|^2,$$

The transition amplitude is $\mathcal{M}_r^{(s)}$

$$|\mathcal{M}_r^{(s)}|^2 = e^2 \varepsilon^{*(s)}_{\mu} \varepsilon^{(s)}_{\nu} H^{\mu\nu}$$

For unknown photon polarization:

$$\overline{\sum}_{s=\pm 1} \varepsilon^{*(s)}_{\mu} \varepsilon^{(s)}_{\nu} \longrightarrow -g_{\mu\nu}.$$

And for the polarization states of hadrons which are remain undetected

$$\overline{\sum} |\mathcal{M}_{r}^{(s)}|^{2} = -\frac{1}{4} e^{2} g_{\mu\nu} H^{\mu\nu}$$
25 / 63

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

The hadronic tensor $H^{\mu\nu}$

$$H^{\mu
u} = {
m Tr}\left[(\not\!\!p + {
m M}) ilde{J}^{\mu}(\not\!\!p' + {
m M}) {
m J}^{
u}
ight], \qquad ilde{J}^{\mu} = \gamma_0 ({
m J}^{\mu})^{\dagger} \gamma_0$$

Currents corresponding to the nucleon Born terms are obtained using χ PT:

$$J_{N(s)}^{\mu} = \frac{D-3F}{2\sqrt{3}f_{\pi}}\bar{u}_{N}(p')p_{\eta}\gamma^{5}\frac{\not p+\dot q+M}{(p+q)^{2}-M^{2}}O_{N}^{\mu}u_{N}(p)$$

$$J_{N(u)}^{\mu} = \frac{D-3F}{2\sqrt{3}f_{\pi}}\bar{u}_{N}(p')O_{N}^{\mu}\frac{\not p-p_{\eta}'+M}{(p-p_{\eta})^{2}-M^{2}}p_{\eta}'\gamma^{5}u_{N}(p),$$

where

$$\mathcal{O}_{N}^{\mu} \equiv f_{1}^{N}(q^{2})\gamma^{\mu} + f_{2}^{N}(q^{2})i\sigma^{\mu\rho}\frac{q_{\rho}}{2M}$$

For real photons $q^2 = 0$, therefore, one may write the above expression as,

$$O_N^{\mu} \equiv f_1^N(0)\gamma^{\mu} + f_2^N(0)i\sigma^{\mu\rho}\frac{q_{\rho}}{2M}.$$

 1Y Prod.
 η Prod
 YK Prod.
 1K Prod.
 Conclusion

For the resonant terms, currents corresponding to s-channel $J^{\mu}_{R(s)}$ and the u-channel $J^{\mu}_{R(u)}$ are:

$$\begin{aligned} J^{\mu}_{R(s)} &= i g_{\eta N S_{11}} \bar{u}_{N^*}(p') p'_{\eta} \frac{p' + q' + M_R}{(p+q)^2 - M_R^2 + i\Gamma_R M_R} O^{\mu}_R u_N(p) \\ J^{\mu}_{R(u)} &= i g_{\eta N S_{11}} \bar{u}_{N^*}(p') O^{\mu}_R \frac{p' - p'_2 + M_R}{(p-p_{\eta})^2 - M_R^2 + i\Gamma_R M_R} p'_{\eta} u_N(p), \end{aligned}$$

where

$$O^{\mu}_{R} \equiv \pm rac{F^{N}_{2}(q^{2}=0)}{2M}i\sigma^{\mu
ho}q_{
ho}\gamma_{5}$$

+(-) sign for s(u) channel diagram. $g_{\eta NS_{11}}$ is fixed using the resonant decay width. 1Y Prod. **ŋ Prod** YK Prod. 1K Prod. Conclusion

 $\Gamma(S_{11} \rightarrow N\phi)$ partial decay width is:

$$\Gamma_{S_{11}\to N\Phi} = C_{\Phi} \left(\frac{g_{\Phi}}{f_{\pi}}\right)^2 \frac{|\vec{p}_{CM}|}{8\pi} \frac{(W^2 - M^2)^2 - m_{\Phi}^2(W^2 + M^2 - 2MM_R)}{W^2}$$

where $C_{\Phi} = 3$ for pion and $C_{\Phi} = 1$ for eta meson and

$$|\vec{p}_{CM}| = \frac{1}{2W} \sqrt{[W^2 - (M + m_{\Phi})^2]} [W^2 - (M - m_{\Phi})^2]}.$$

W is the energy at resonance rest frame, which for on-mass shell reduces to the mass of resonance i.e. $W_{\text{on-mass}} = M_R$. To fix the coupling, following decay fraction for the N^* resonance are taken

$$\begin{array}{ll} N^{*}(1535) \rightarrow & N\pi & 35-50\% \\ N^{*}(1535) \rightarrow & N\eta & (42\pm10)\% \\ N^{*}(1535) \rightarrow & N\pi\pi & 1-10\% \end{array}$$

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

$S_{11}^+(P^*)$			$S_{11}^{-}(N^{*})$		
g_π^{1650}	=	-0.105	g_{π}^{1650}	=	0.131
g_{η}^{1650}	=	-0.088	g_{η}^{1650}	=	0.0868
g_{η}^{1535}	=	0.284	g_{η}^{1535}	=	0.286
g_π^{1535}	=	0.092	g_{π}^{1535}	=	0.106

1 Υ Prod. η Prod Y K Prod. 1 K Prod. Conclusion

 $A_{\frac{1}{2}}$ is generally parameterized as(following MAID convention):

$$A_{\frac{1}{2}}^{p,n} = \sqrt{\frac{2\pi\alpha_e}{M} \frac{(M_R + M)^2}{M_R^2 - M^2}} \frac{M_R - M}{2M} F_2^N(0)$$

Table: Parameters fitted using the data from the MAMI Crystal Ball experiment

Resonance \rightarrow	S11(1535)	S11(1650)
Helicity	$A_{\lambda}(0)$	$A_\lambda(0)$
Amplitude↓	10^{-3}	10^{-3}
$A_{1/2}^{p}(0)$	89.38	53.0
$S_{1/2}^{p}(0)$	-16.5	-3.5

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

Photoproduction of n Mesons

Crystal Ball detector at the Mainz Microtron(MAMI-C) E. McNicoll *et. al.* Phys. Rev. C **82** (2010) 035208

1Y Prod. n Prod YK Prod. 1K Prod. Conclusion

Weak production of η Mesons

The current has structure V - A

Hadronic currents for nonresonant terms using χPT is obtained as,

$$J_{N(s)}^{\mu} = \frac{gV_{ud}}{2\sqrt{2}} \frac{D - 3F}{2\sqrt{3}f_{\pi}} \bar{u}_{N}(p') p_{\eta}\gamma^{5} \frac{\not{p} + \dot{q} + M}{(p+q)^{2} - M^{2}} O_{N}^{\mu} u_{N}(p)$$

$$J_{N(u)}^{\mu} = \frac{gV_{ud}}{2\sqrt{2}} \frac{D - 3F}{2\sqrt{3}f_{\pi}} \bar{u}_{N}(p') O_{N}^{\mu} \frac{\not{p} - p_{\eta}' + M}{(p-p_{\eta})^{2} - M^{2}} p_{\eta}' \gamma^{5} u_{N}(p),$$

where

$$O_{N}^{\mu} \equiv f_{1}^{V}(q^{2})\gamma^{\mu} + f_{2}^{V}(q^{2})i\sigma^{\mu\rho}\frac{q_{\rho}}{2M_{N}} - f_{A}(q^{2})\gamma^{\mu}\gamma^{5} - f_{P}(q^{2})q^{\mu}\gamma^{5}$$

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

For the resonant $S_{11}(1535)$ and $S_{11}(1650)$ channels the hadronic currents are given by,

$$J_{R(s)}^{\mu} = \frac{gV_{ud}}{2\sqrt{2}} ig_{\eta}\bar{u}_{N}(p')p_{\eta}' \frac{\not p + \not q + M_{R}}{(p+q)^{2} - M_{R}^{2} + i\Gamma_{R}M_{R}} O_{R}^{\mu}u_{N}(p)$$

$$J_{R(u)}^{\mu} = \frac{gV_{ud}}{2\sqrt{2}} ig_{\eta}\bar{u}_{N}(p') O_{R}^{\mu} \frac{\not p - \not p_{2} + M_{R}}{(p-p_{\eta})^{2} - M_{R}^{2} + i\Gamma_{R}M_{R}} p_{\eta}'u_{N}(p),$$

where

$$O_R^{\mu} \equiv \frac{F_1^V(q^2)}{(2M)^2} (\dot{q}q^{\mu} - q^2\gamma^{\mu})\gamma_5 \pm \frac{F_2^V(q^2)}{2M} i\sigma^{\mu\rho}q_{\rho}\gamma_5 -F_A(q^2)\gamma^{\mu} \mp \frac{F_P(q^2)}{M}q^{\mu}$$

1Υ Prod. η Prod YK Prod. 1K Prod. Conclusion

The isovector form factors $F_{1,2}^V$, are given in terms of the electromagnetic transition form factors of protons and neutrons as

$$F_1^V(Q^2) = F_1^p(Q^2) - F_1^n(Q^2); \quad F_2^V(Q^2) = F_2^p(Q^2) - F_2^n(Q^2).$$

$$F_{1,2}^{p,n}(Q^2) \text{ are obtained from the helicity amplitudes } A_{\frac{1}{2}}^{p,n} \text{ and } S_{\frac{1}{2}}^{p,n},$$

given as

$$\begin{aligned} A_{\frac{1}{2}}^{p,n} &= \sqrt{\frac{2\pi\alpha_e}{M}} \frac{(M_R + M)^2 + Q^2}{M_R^2 - M^2} \left(\frac{Q^2}{4M^2} F_1^{p,n}(Q^2) + \frac{M_R - M}{2M} F_2^{p,n}(Q^2)\right) \\ S_{\frac{1}{2}}^{p,n} &= \sqrt{\frac{\pi\alpha_e}{M}} \frac{(M_R - M)^2 + Q^2}{M_R^2 - M^2} \frac{(M_R + M)^2 + Q^2}{4M_R M} \left(\frac{M_R - M}{2M} F_1^{p,n}(Q^2) - F_2^{p,n}(Q^2)\right) \end{aligned}$$

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

The parameters $A_{\frac{1}{2}}$ and $S_{\frac{1}{2}}$ are generally parameterized as:

$$\begin{array}{rcl} A_{\frac{1}{2}}(Q^2) & = & A_{\frac{1}{2}}(0) \left(1 + \alpha \, Q^2\right) \, e^{-\beta Q^2} \\ S_{\frac{1}{2}}(Q^2) & = & S_{\frac{1}{2}}(0) \left(1 + \alpha \, Q^2\right) \, e^{-\beta Q^2} \, , \end{array}$$

Table: Parameters used for the helicity amplitude

Resonance \rightarrow	S11	(1535)		S11(1650)		
Helicity	$A_{\lambda}(0)$	α	β	$A_{\lambda}(0)$	α	β
Amplitude↓	10^{-3}			10^{-3}		
$A^{p}_{1/2}(Q^{2})$	89.38	1.61364	0.75879	53	1.45	0.62
$S^p_{1/2}(Q^2)$	-16.5	2.8261	0.73735	-3.5	2.88	0.76
$A_{1/2}^{n}(Q^{2})$	-52.79	2.86297	1.68723	9.3	0.13	1.55
$S^n_{1/2}(Q^2)$	29.66	0.35874	1.55	10.0	-0.5	1.55

We derived Goldberger-Treiman relation for the axial couplings and assumed a dipole form for Q^2 dependence for the axial form factors.

$$F_A(Q^2) = F_A(0) \left(1 + \frac{Q^2}{M_A^2}\right)^{-2};$$

$$F_P(Q^2) = \frac{(M_R - M)M}{Q^2 + m_\pi^2} F_A(Q^2).$$

 $F_A(0) = 2g_\eta \qquad M_A = 1.03 GeV$

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
arXiv:13	11.2293			

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

arXiv:1311.2293

Neutrino

Antineutrino

 $E_{v(\bar{v})} = 1.5 GeV$

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Atmospheri	c			

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
T2K				

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Outline				

2 Eta Production

3 Associated Production

A Single Kaon Production

5 Conclusion

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

Processes

Neutrino

 $egin{array}{rcl}
u_ln &
ightarrow l^- \Sigma^+ K^0
u_ln &
ightarrow l^- \Lambda K^+
u_ln &
ightarrow l^- \Sigma^0 K^+
u_lp &
ightarrow l^- \Sigma^+ K^+
\end{array}$

Anti-neutrino

$$egin{array}{rcl} ar{
u}_lp & o & l^+ \Sigma^- K^+ \ ar{
u}_lp & o & l^+ \Lambda K^0 \ ar{
u}_lp & o & l^+ \Sigma^0 K^0 \ ar{
u}_ln & o & l^+ \Sigma^- K^0 \end{array}$$

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

Feynman diagram

1Y Prod.

η Prod

YK Prod.

1K Proc

Conclusion

$$\begin{split} j^{\mu}|_{s} &= iA_{SY}V_{ud}\frac{\sqrt{2}}{2f_{\pi}}\bar{u}_{Y}(p')p_{k}\gamma^{5}\frac{p+q+M}{(p+q)^{2}-M^{2}}\mathcal{H}^{\mu}u_{N}(p) \\ j^{\mu}|_{u} &= iA_{UY}V_{ud}\frac{\sqrt{2}}{2f_{\pi}}\bar{u}_{Y}(p')\mathcal{H}^{\mu}\frac{p-p_{k}+M_{Y'}}{(p-p_{k})^{2}-M_{Y'}^{2}}p_{k}\gamma^{5}u_{N}(p) \\ j^{\mu}|_{t} &= iA_{TY}V_{ud}\frac{\sqrt{2}}{2f_{\pi}}(M+M_{Y})\bar{u}_{Y}(p')\gamma_{5}u_{N}(p) \frac{q^{\mu}-2p_{k}^{\mu}}{(p-p')^{2}-m_{k}^{2}} \\ j^{\mu}|_{CT} &= iA_{CT}V_{ud}\frac{\sqrt{2}}{2f_{\pi}}\bar{u}_{Y}(p')\left(\gamma^{\mu}+B_{CT}\gamma^{\mu}\gamma^{5}\right)u_{N}(p) \\ j^{\mu}|_{\pi F} &= iA_{\pi}V_{ud}\frac{\sqrt{2}}{4f_{\pi}}\bar{u}_{Y}(p')(q+p_{k})u_{N}(p)\frac{q^{\mu}}{q^{2}-m_{\pi}^{2}} \\ \mathcal{H}^{\mu} &= F_{1}^{V}\gamma^{\mu}+i\frac{F_{2}^{V}}{2M}\sigma^{\mu\nu}q_{\nu}-G_{A}\left(\gamma^{\mu}-\frac{qq^{\mu}}{q^{2}-m_{\pi}^{2}}\right)\gamma^{5}, \end{split}$$

where \mathcal{H}^{μ} is the transition current for $Y \leftrightarrows Y'$ with $Y = Y' \equiv$ Nucleon and/or Hyperon.

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

The standard form factors for weak CC transitions of the SU(3) baryon octets.

Sl. No.	Weak transition	$F_1(Q^2)$	$F_2(Q^2)$	$G_A(Q^2)$
1	$p \to n$	$f_1^p(Q^2) - f_1^n(Q^2)$	$f_2^p(Q^2) - f_2^n(Q^2)$	$g_A(Q^2)$
2	$p\to\Lambda$	$-\sqrt{\tfrac{3}{2}}f_1^p(Q^2)$	$-\sqrt{\tfrac{3}{2}}f_2^p(Q^2)$	$-\sqrt{\frac{1}{6}}\frac{3F+D}{F+D}g_A(Q^2)$
2	$n\to\Lambda$	$-\sqrt{\tfrac{3}{2}}f_1^p(Q^2)$	$-\sqrt{\tfrac{3}{2}}f_2^p(Q^2)$	$-\sqrt{\frac{1}{6}}\frac{3F+D}{F+D}g_A(Q^2)$
3	$\Sigma^\pm\to\Lambda$	$-\sqrt{\frac{3}{2}}f_1^n(Q^2)$	$-\sqrt{\frac{3}{2}}f_2^n(Q^2)$	$\sqrt{\frac{2}{3}} \frac{D}{F+D} g_A(Q^2)$
4	$\Sigma^\pm\to\Sigma^0$	$\mp \frac{1}{\sqrt{2}} [2f_1^p(Q^2) + f_1^n(Q^2)]$	$\mp \frac{1}{\sqrt{2}} [2f_2^p(Q^2) + f_2^n(Q^2)]$	$\mp \sqrt{2} \frac{F}{F+D} g_A(Q^2)$
5	$p \to \Sigma^0$	$-\frac{1}{\sqrt{2}}[f_1^p(Q^2)+2f_1^n(Q^2)]$	$-\frac{1}{\sqrt{2}}[f_2^p(Q^2)+2f_2^n(Q^2)]$	$\frac{1}{\sqrt{2}} \frac{D-F}{F+D} g_A(Q^2)$
5	$n \to \Sigma^0$	$\frac{1}{\sqrt{2}}[f_1^p(Q^2) + 2f_1^n(Q^2)]$	$\frac{1}{\sqrt{2}}[f_2^p(Q^2) + 2f_2^n(Q^2)]$	$-rac{1}{\sqrt{2}}rac{D-F}{F+D}g_A(Q^2)$
6	$n ightarrow \Sigma^-$	$-f_1^p(Q^2)-2f_1^n(Q^2)$	$-f_2^p(Q^2) - 2f_2^n(Q^2)$	$\frac{D-F}{F+D}g_A(Q^2)$
	$p\to \Sigma^+$	$-f_1^p(Q^2)-2f_1^n(Q^2)\\$	$-f_2^p(Q^2)-2f_2^n(Q^2)\\$	$\frac{D-F}{F+D}g_A(Q^2)$

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion
0000000				

Couplings for $\Delta S = 0$ K production

Process	A_{CT}	B_{CT}	A_{SY}	A_{UY}		A_{TY}	A_{π}
				$Y' = \Sigma$	$Y' = \Lambda$		
$\bar{\mathbf{v}}_l p \rightarrow l^+ \Sigma^- K^+$	0	0	D-F	D-F	$\frac{1}{3}(D+3F)$	0	0
$v_l n \rightarrow l^- \Sigma^+ K^0$							
$\bar{\nu}_l p \rightarrow l^+ \Lambda K^0$	$-1/\frac{3}{2}$	$\frac{-1}{2}(D+3F)$	$\frac{-1}{\sqrt{2}}(D+3F)$	$-\sqrt{\frac{2}{\pi}}(D-F)$	0	$\frac{-1}{\sqrt{2}}(D+3F)$	$\sqrt{\frac{3}{2}}$
$v_l n \rightarrow l^- \Lambda K^+$	V 2	3 (= + ==)	V6 V	V 3 ()	-	V6	V 2
$\bar{\rm v}_l p \rightarrow l^+ \Sigma^0 K^0$	∓ <u>1</u>	D-F	$\mp \frac{1}{\sqrt{2}}(D-F)$	$\pm \sqrt{2}(D-F)$	0	$\pm \frac{1}{\overline{c}}(D-F)$	$\pm \frac{1}{2}$
$v_l n \rightarrow l^- \Sigma^0 K^+$	· √2		v2	+ • 2(B - 1)		√2 \```'	$\sqrt{2}$
$\bar{v}_l n \rightarrow l^+ \Sigma^- K^0$	-1	D-F	0	F - D	$\frac{1}{2}(D+3F)$	D-F	1
$v_l p \rightarrow l^- \Sigma^+ K^+$	-	-	-	_	3(- + 51)	-	-

Table: Constant factors appearing in the hadronic current. The upper sign corresponds to the processes with \bar{v}

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
arXiv:13	11.2293			

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

With Resonance

• N(1650) I (J^P) $\frac{1}{2}$ $(\frac{1}{2}^-)$ • N(1720) I (J^P) $\frac{1}{2}$ $(\frac{3}{2}^+)$

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
arXiv:13	211.2293			

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

Comparison of total cross section for the $CC \nu_{\mu}/\bar{\nu}_{\mu}$ induced $K\Lambda$ channel with the results of Shrock et al. PRD12 (1975) 2049.

Drogoss		$\sigma imes 10^{-41} cm^2$			
Flocess		$E_{V_{\mu}} = 1.2 \text{ GeV}$	$E_{\nu_{\mu}} = 1.6 \text{ GeV}$	$E_{\nu_{\mu}} = 2 \text{ GeV}$	
$\nu_{\mu}n \rightarrow \mu^{-}\Lambda K^{+}$	Present Work	0.2	4.0	15.0	
	Shrock et al.	0.14	1.8	5.4	
$ar{ u}_{\mu}p ightarrow \mu^+\Lambda K^0$	Present Work	0.1	2.0	8.0	
	Shrock et al.	0.12	1.4	4.1	

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Outline				

2 Eta Production

3 Associated Production

5 Conclusion

Figure: Feynman diagrams contributing to the $J^{\mu(H)}$

Figure: Feynman diagrams contributing to the $J^{\mu(H)}$

For the background terms we have used

Chiral Perturbation Theory (χPT)

Figure: Feynman diagrams contributing to the $J^{\mu(H)}$

For the background terms we have used

Chiral Perturbation Theory (χPT)

Resonant Term $\Sigma^*(1385)$

Used in \bar{v} induced K-production

 1Y Prod.
 η Prod
 YK Prod.
 1K Prod.
 Conclusion

 0000000

Currents for $\Delta S = 1$ *K production*

$$\begin{split} J^{\mu}|_{CT} &= iA_{CT}V_{us}\frac{\sqrt{2}}{2f_{\pi}}\bar{N}(p') \left(\gamma^{\mu} + B_{CT}\gamma^{\mu}\gamma_{S}\right)N(p) \\ j^{\mu}|_{Cr\Sigma} &= iA_{Cr\Sigma}V_{us}(D-F)\frac{\sqrt{2}}{2f_{\pi}}\bar{N}(p') \left(\gamma^{\mu} + i\frac{\mu_{p} + 2\mu_{n}}{2M}\sigma^{\mu\nu}q_{\nu} + (D-F)(\gamma^{\mu} - \frac{q^{\mu}}{q^{2} - M_{k}^{2}}\dot{q})\gamma^{S}\right)\frac{\dot{p} - \dot{p}_{k} + M_{\Sigma}}{(p - p_{k})^{2} - M_{\Sigma}^{2}}\dot{p}_{k}\gamma^{S}N(p), \\ j^{\mu}|_{Cr\Lambda} &= iA_{Cr\Lambda}V_{us}(D+3F)\frac{\sqrt{2}}{4f_{\pi}}\bar{N}(p') \left(\gamma^{\mu} + i\frac{\mu_{p}}{2M}\sigma^{\mu\nu}q_{\nu} - \frac{D+3F}{3}(\gamma^{\mu} - \frac{q^{\mu}}{q^{2} - M_{k}^{2}}\dot{q})\gamma^{S}\right)\frac{\dot{p} - \dot{p}_{k} + M_{\Lambda}}{(p - p_{k})^{2} - M_{\Lambda}^{2}}\dot{p}_{k}\gamma^{S}N(p), \\ J^{\mu}|_{\Sigma} &= iA_{\Sigma}(D-F)V_{us}\frac{\sqrt{2}}{2f_{\pi}}\bar{N}(p')\dot{p}_{k}\gamma_{S}\frac{\dot{p} + \dot{q} + M_{\Sigma}}{(p + q)^{2} - M_{\Sigma}^{2}}\left(\gamma^{\mu} + i\frac{(\mu_{p} + 2\mu_{n})}{2M}\sigma^{\mu\nu}q_{\nu}(D-F)\left\{\gamma^{\mu} - \frac{q^{\mu}}{q^{2} - M_{\lambda}^{2}}\dot{q}\right\}\gamma^{S}\right)N(p) \\ J^{\mu}|_{\Lambda} &= iA_{\Lambda}V_{us}(D+3F)\frac{1}{2\sqrt{2}f_{\pi}}\bar{N}(p')\dot{p}_{k}\gamma_{S}\frac{\dot{p} + \dot{q} + M_{\Sigma}}{(p + q)^{2} - M_{\Lambda}^{2}}\left(\gamma^{\mu} + i\frac{\mu_{p}}{2M}\sigma^{\mu\nu}q_{\nu}\frac{(D-F)}{3}\left\{\gamma^{\mu} - \frac{q^{\mu}}{q^{2} - M_{\lambda}^{2}}\dot{q}\right\}\gamma^{S}\right)N(p) \\ J^{\mu}|_{KP} &= iA_{KP}V_{us}\frac{\sqrt{2}}{2f_{\pi}}\bar{N}(p')\dot{q}N(p)\frac{q^{\mu}}{q^{2} - M_{\lambda}^{2}} \\ J^{\mu}|_{\pi} &= iA_{\pi}\frac{M\sqrt{2}}{2f_{\pi}}V_{us}(D+F)\frac{2p_{k}^{\mu} - q^{\mu}}{(q - p_{k})^{2} - m_{\pi}^{2}}\bar{N}(p')\gamma_{S}N(p) \\ J^{\mu}|_{\eta} &= iA_{\eta}\frac{M\sqrt{2}}{2f_{\pi}}V_{us}(D-3F)\frac{2p_{k}^{\mu} - q^{\mu}}{(q - p_{k})^{2} - m_{\pi}^{2}}\bar{N}(p')\gamma_{S}N(p) \\ J^{\mu}|_{\Sigma^{*}} &= -iA_{\Sigma^{*}}\frac{f}{f_{\pi}}\frac{1}{\sqrt{6}}V_{us}\frac{p_{k}^{2}}{P^{2} - M_{\Sigma^{*}}^{2} + i\Gamma_{\Sigma^{*}}M_{\Sigma^{*}}}\bar{N}(p')P_{RS_{\lambda\rho}}(\Gamma_{V}^{\mu\mu} + \Gamma_{\Lambda}^{\mu\mu})N(p) \end{split}$$

1Y Prod.	η Prod	YK Prod.	1K Prod.	Conclusion

Process	B_{CT}	A_{CT}	A_{Σ}	A_{Λ}	$A_{Cr\Sigma}$	$A_{Cr\Lambda}$	A_{KP}	A_{π}	Aη	A_{Σ^*}
$\nu n \rightarrow l^- K^+ n$	D-F	-1	0	0	-1	0	-1	-1	-1	0
$v p \rightarrow l^- K^+ p$	-F	-2	0	0	$-\frac{1}{2}$	1	-2	1	-1	0
$vn \rightarrow l^- K^0 p$	-D-F	-1	0	0	$\frac{1}{2}$	1	-1	2	0	0
$\bar{\nu}n \rightarrow l^+ K^- n$	D-F	1	-1	0	Ō	0	-1	1	1	2
$\bar{\nu}p \rightarrow l^+ K^- p$	-F	2	$-\frac{1}{2}$	1	0	0	-2	-1	1	1
$\bar{\nu}p \rightarrow l^+ \bar{K}^0 n$	-D-F	1	$\frac{1}{2}$	1	0	0	-1	-2	0	-1

Table: Constant factors appearing in the hadronic current

1Y Prod. η Prod YK Prod. IK Prod. Conclusion

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Q^2 Distri	bution			

Figure: Differential Cross-section for the processes $\bar{v}_{\mu}N \rightarrow \mu^+ N'\bar{K}$ (Solid lines) and $\bar{v}_e N \rightarrow e^+ N'\bar{K}$ (Dashed lines)

IY Prod. η Prod YK Prod. IK Prod. Conclusion

$\overline{\sigma} \quad \overline{for} \quad \overline{v_{\mu}} + p \rightarrow \mu^{+} + K^{-} + p$

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Outline				

2 Eta Production

3 Associated Production

A Single Kaon Production

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Conclusion				

 We have presented the results for single hyperon production, η production, associated particle production and single K-production.

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Conclusion				

- We have presented the results for single hyperon production, η production, associated particle production and single K-production.
- The study may be useful in the analysis of neutrino as well as antineutrino experiments at MINERvA, NOvA, T2K and others.

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Conclusion				

- We have presented the results for single hyperon production, η production, associated particle production and single K-production.
- The study may be useful in the analysis of neutrino as well as antineutrino experiments at MINERvA, NOvA, T2K and others.
- We find the contribution of contact term to be significant in single kaon production as well as in the associated particle production processes.

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Conclusion				

- We have presented the results for single hyperon production, η production, associated particle production and single K-production.
- The study may be useful in the analysis of neutrino as well as antineutrino experiments at MINERvA, NOvA, T2K and others.
- We find the contribution of contact term to be significant in single kaon production as well as in the associated particle production processes.
- We find $S_{11}(1535)$ dominance in η production.

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Conclusion				

- We have presented the results for single hyperon production, η production, associated particle production and single K-production.
- The study may be useful in the analysis of neutrino as well as antineutrino experiments at MINERvA, NOvA, T2K and others.
- We find the contribution of contact term to be significant in single kaon production as well as in the associated particle production processes.
- We find $S_{11}(1535)$ dominance in η production.
- We find the contribution from $S_{11}(1650)$ interference terms in A production through A.P.P. process to be about 15-20% at 1.5-2GeV, while from $S_{11}(1720)$ the contribution is almost negligible.

1Y Prod. 0000000	η Prod	YK Prod.	1K Prod.	Conclusion
Thanks				

Thank You