

1

T2K preparation for 2p2h

Peter Sinclair

NuInt 21 May 2014

Contents

- Why do osc. experiments care about 2p2h?
- Implementation of 2p2h model into NEUT
 - Leptonic prediction
 - Nucleon prediction
- Confronting the model with data
 - Basic selection, goodness-of-fit (GoF)
 - Towards a measurement

Imperial College Why do we care?

If you think 2p2h are CCQE, reconstructed energy bias

300 MeV 1000 MeV

In T2K, nucleons hard to see \rightarrow 2p2h looks like CCQE Can account for this if 2p2h is in the generator

Peter Sinclair

London

Imperial College
LondonPrevious NEUT (<v5.3)</th>

Primary generator in T2K: **NEUT**

NEUT models: measurement \rightarrow far-detector flux

In all T2K publications to date, NEUT contains (amongst other things..):

In NEUT

- FSI cascade model
- π -less Δ decay

Not in NEUT

• Two body current (nucleon-level 2p2h)

Different kinematics of 2p2h \rightarrow different extraction of flux from measurement. Need to get this right!

[1] J. Nieves et al. Phys. Rev. C 83:045501 (2011)[2] J. T. Sobczyk Phys. Rev. C 86:015504 (2012)

2p2h in NEUT: Nieves model

Nieves: multi-body expansion of W-propagator in nucleus

- Various diagrams, but use only 2p2h part
- Two vertices, seven vertex diagrams \rightarrow **49 diagrams**

Many additional details: double-counting of diagrams, in-medium effects etc...

Model prediction

Nieves' model gives prediction of lepton double-differential cross section given parameters:

Lepton kinematics implemented via look-up tables

Imperial CollegeNieves' model and theLondonkinematic limit

Nieves' model includes diagrams which contribute at O(100MeV). Limit of validity of $E_v \sim 1.5$ GeV.

- Δ resonance simulated, but no higher-mass resonances
- Calculation not configured for high momentum transfer (numerical accuracy)

But model can be extended by only using **low threemomentum transfer (q3) part of the cross-section** [3].

- Low q3 part remains accurate at high-energy
- Low q3 part contains most of the 'interesting physics' processes which are 'interesting' at high q3 not simulated!

Prediction can then be extended to arbitrary energy

[3] R. Gran et al. Phys. Rev. D88 113007 (2013)

Effect of the kinematic limit

Imposing a kinematic limit cuts out large area of lepton phase space. Effect is larger at larger energies.

Post-cut tables are the input to NEUT for the 2p2h mode

Imperial College

London

For simulation in detector, need prediction for all final-state particles

Nucleon ejection method

How do you model the nucleon behaviour?

Choose set of assumptions to constrain behaviour

Jan Sobczyk's multinucleon ejection model

→ Phys. Rev. C 86 015504 (2012)

- 1) Initial state nucleons uncorrelated
- 2) Nucleon momenta same as 1p1h
- 3) Energy shared equally between F.S. Nucleons
- 4) Energy conserved(All nuclear effects as normal)

Imperial College
LondonNEUT nucleon simulation
method (v5.3.0)

- 1) In lab frame, pick E_v , $P\mu$, $cos\theta\mu$. This defines the Q^2 .
- 2) Choose int. position in nucleus (defines p_f)
- Choose two uncorrelated nucleon momenta. (Check energy conservation)
- 4) Boost to CoM frame of nucleon system (momentum + Q)
- 5) Divide energy between two nucleons, eject in random direction
- 6) Boost back to lab frame
- 7) Pauli-blocking, FSI etc. as normal

Lepton part + hadron part = full model!

Limitations:

1) No isospin breakdown

- i.e. how many spectator nucleons are p or n?
- Available in code, probable upgrade in future

2) Limited target nuclei

• Only calculate for C12, O16, Ca40, linear interpolation for others

Current limitations

• No calculation on non-isoscalar possible (different numbers of p,n) so must interpolate

3) Simple hadron model

• Currently both F.S. nucleons treated the same, but maybe some asymmetry due to pion propagator

Use of 2p2h model

Now 2p2h model is in NEUT, what to do with it?

- 1) Include into osc. analysis
- 2) Confront with data
- 3) Search/measurement using T2K data

Comparison with T2K data

Quick goodness-of-fit study

- Use same dataset as osc. analyses (not optimised for 2p2h search!) Pμ-cosθμ from three near-detector selections
- Fit full model to data, as in near-detector part of 2013 osc. analysis Many, many flux and xsec parameters are fit [4]
- 3) Compare goodness-of-fit using Bayesian goodness-of-fit technique [5]

P-Value: 0.1136 with old model (no 2p2h) 0.1188 with new model (incl. 2p2h)

i.e. can't tell the difference with this study (by design, many flux/xsec parameters in fit to provide flexibility \rightarrow good agreement)

^[4] A. Kaboth arXiv:1310.6544 [hep-ex]

^[5] A. Gelman et al. Stat. Sin. 733-807 (1996)

Imperial College MEC in the T2K data

Several early-stage studies currently exploring how to perform a measurement making best use of T2K data

• Find variables to distinguish CCQE from 2p2h

Goals:

- Constrain/measure CCQE/2p2h fraction in a sample
- Measurement of 2p2h mode

(Final goal to be informed by power of the data)

Progress:

Several studies ongoing using p, μ kinematics to get sensitivity to 2p2h. Most promising so far: μ -p opening angle

Challenge: how to establish separation between 2p2h, resonant.

Summary

Simulation of 2p2h now in NEUT. Able to simulate 2p2h from $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$ in T2K.

Leptonic part from model of Nieves et al. with momentum transfer cut.

Hadronic part from model of Sobczyk

First comparison to T2K data: inconclusive with current (very non-optimal) selection. Studies for search/measurement have begun.

Supplementary slides

Kinematic limit in practice

q3 cut manifests on a limitation of the outgoing lepton kinematic space (i.e. a minimum momentum and a maximum scattering angle)

Definition

|q3| = magnitude of three-momentum transfer $q_3 = p_{\mu} - p_{\nu}$

$$\mathbf{v} = (|\mathbf{p}_{\mu}|^{2} + |\mathbf{p}_{\nu}|^{2} - 2|\mathbf{p}_{\mu}||\mathbf{p}_{\nu}|\cos(\theta_{\nu\mu}))^{1/2}$$

$$|\mathbf{q}_{3}| = (|\mathbf{p}_{\mu}|^{2} + |\mathbf{p}_{\nu}|^{2} - 2|\mathbf{p}_{\mu}||\mathbf{p}_{\nu}|\cos(\theta_{\nu\mu}))^{1/2}$$

Kinematic cut-off: $|\mathbf{q}_3| \leq \alpha$, where α = some value, taken in the paper to be **1.2GeV**

Peter Sinclair

Validation

Quantify statistical agreement: look at pull distribution

If MC is consistent with having been drawn from prediction, pull should have mean of zero and width of unity.

Peter Sinclair

Some interesting plots from the hadronic simulation

5000

4000

3000

2000

1000

ᅇᆣ

Highest final hadron momentum

Highest final-state hadron momentum

Lowest final-state hadron momentum

100 200 300 400 500 600 700

T

'Delta theta p'

Imperial College London

Misc. kinematic plots

Lowest final hadron momentum

Entries

Mean

RMS

800 900

MeV

100000

423

160.3