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INTRODUCTION
¢  NOνA: 

�  NuMI: Neutrinos at the Main Injector (νµ) 
�  Off-Axis: narrow band beam (2 GeV) 
�  νe Appearance 

¢  Overview and Status of the Experiment 
¢  First Neutrino Candidates 
¢  Survey Some Physics Goals: 

�  Oscillation Physics 
�  Neutrino Cross Sections 
�  Magnetic Monopoles 

P (⌫µ ! ⌫e)
= f(✓13, ✓23, �CP,mass hierarchy, ...)

Physics Goals 
¢  θ13 
¢  θ23 Octant 
¢  CP-violating Phase 

Angle δCP 
¢  Neutrino Mass 

Hierarchy 
¢  Neutrino Cross Sections 
¢  Neutrino Magnetic 

Moment 
¢  Sterile Neutrinos 
¢  Dark Matter 
¢  WISPs 
¢  Magnetic Monopoles 
¢  Supernova 
¢  WIMPs 
¢  And More! 
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NEUTRINO DETECTION
¢  We want to detect electron neutrinos (νe): 

�  This requires a large detector mass and good  
electron identification. 

¢  Solution: “Fully” Active Detector 
�  use low Z materials: PVC extrusions filled with liquid scintillator 

¢  radiation length ~ 40 cm, Molière radius ~ 11 cm 
¢  provides many samples per radiation length (differentiate e− and π0) 

�  each extrusion contains one wavelength-shifting fiber 
�  ends of fiber read out by avalanche photo-diode (APD) 

APD 
32 Channels 

charged-current 
interaction 

1 Channel 1 Block 
12k Channels 

xz-view 

yz-view 

x 

y 
z 
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p 

Target Magnet Near Detector 

14.6 mrad 

νµ 

νµ/νe/ντ 

Far Detector 

π+
 

π+ → µ+νµ 

Decay 

NEUTRINO PRODUCTION

¢  NuMI: Neutrinos at the Main Injector 
¢  Beam Power: 

�  currently at 300 kW 
�  ramping to 500 kW (end of year) 
�  700 kW after Booster improvements (next year) 

¢  Running stably since last summer. 
¢  We can achieve a narrowly distributed neutrino 

energy by placing the detectors 14.6 mrad off 
the beam axis. 

¢  This is also the νµ à νe oscillation peak. 
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p 

Target Magnet Near Detector 

14.6 mrad 
νµ 

νµ/νe 

Far Detector 

π+
 

¢  1 km downstream from NuMI target 
¢  105 m underground 
¢  300 tons 
¢  4 m × 4 m × 15 m 
¢  Muon Catcher: 

�  10 alternating planes of detector and  
4 inch steel plates 

¢  Instrumented with 20k channels. 
¢  We also have a prototype detector on 

the surface (NDOS). 
�  See J. Nowak’s talk for more NDOS 

details. 

      Last Block 
Placed:  January 2014 
Filled:  April 2014 
Instr.:  This Summer 

NEAR DETECTOR AT FERMILAB
Top View Muon 

Catcher 

Beam 
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NOvA Far Detector Assembly Progress The Intensity Frontier 

M
ay 21, 2013 

July 1, 2013 

Block Filled 

Status Date: 19MAY14 

July 1, 2012 

2 3 4 5 6 8 
14 

27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 
0 

7 
1 

M
ay 21, 2013 

Block Instrumented 

Instrumentation Progress 
Di-Block 12: 25% Complete 

14 kilotons = 28 NOvA Blocks 
28 blocks of PVC modules are assembled and installed in place 

28 blocks are filled with liquid scintillator 

22.5 blocks are outfitted with electronics 

January 13, 2014 

January 14, 2014 

January 14, 2014 

January 30, 2014 
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February 13, 2014 
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M
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FAR DETECTOR AT ASH RIVER, MN

¢  810 km downstream from NuMI target 
¢  on surface  
¢  14 ktons 
¢  15 m × 15 m × 60 m 
¢  350k channels 
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ELECTRONICS PROGRESS

Electronics Installed 



Martin Frank University of Virginia 18 
 

Track&length&distribu\on&of&cosmic&muon&tracks.&&Total&live&is&1439.91&seconds.&&

Plot&showing&the&hit&rate&(Hz)&in&the&signal&ADC&range&for&the&first&7&diblocks&(DB)&of&the&Far&
Detector.&&There&are&32&channels&in&each&module.&&0.2%&of&FEBs&report&as&noisy&and&&0.19%&
of&FEBs&report&as&quiet.&&Total&live&\me&is&1439.91&seconds.&
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AND IT WORKS!
¢  An excerpt from our data 

quality monitoring from April. 
¢  Collected physics data with  

50% of the full detector then. 
�  Currently using 70%. 

¢  Hit Rate (top) 
�  “physics” hits per second 
�  each bin = 1 APD = 32 channels  
�  170k total channels 
�  >99% of channels working! 

¢  Muon Track Length (bottom) 
�  number of tracks / 103 s 
�  cosmic ray rate ~ 105 Hz 
�  We can reconstruct the 

incoming cosmic rays! 

Detector Width 

Detector Length 
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SIMULATED EVENT DISPLAY
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REAL EVENT DISPLAY

¢  grey hits:  
�  full 500 µs time window 

¢  colored hits: 
�  ~20 µs in time with beam 
�  colored by time 

Time Energy 
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REAL EVENT DISPLAY (zoomed in)

Time Energy 
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REAL EVENT DISPLAY (with reconstruction)

Time Energy 
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¢  Using the oscillation 
equations, we can 
calculate the neutrino 
and anti-neutrino 
appearance 
probabilities.  

¢  Assume that NOvA 
would measure where 
the orange arrows 
point (best case 
scenario). 

¢  The bold and dotted 
lines show the 1 and  
2 σ contours that we 
could achieve with: 

¢  3 years neutrino 
running plus 3 years 
anti-neutrino running 

OSCILLATION PHYSICS REACH

Δm2 > 0 

P (⌫µ ! ⌫e)

P
(⌫̄

µ
!

⌫̄ e
)

θ23 = 45° 
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MASS HIERARCHY AND δCP SENSITIVITY
¢  Given the plots from the previous slides and using our analysis 

framework, we can determine how sensitive we will be to resolve 
the: 
�  Mass Hierarchy (even better with T2K) 
�  CP-violating phase angle (δCP) 
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Results from full simulation, 
reconstruction, and selection.  
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¢  Given the plots from the previous slides and using our analysis 

framework, we can determine how sensitive we will be to resolve 
the: 
�  Mass Hierarchy (even better with T2K) 
�  CP-violating phase angle (δCP) 
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NEUTRINO CROSS SECTIONS

¢  Target = Near Detector: 
�  2.6 ⨉ 1031 nucleons 
�  47% CH2 (from oil) 
�  40% C2H3Cl (from plastic) 

¢  Off-axis beam provides 
lots of neutrinos: 
�  between 1 and 3 GeV 
�  with 6 ⨉ 1020 POT per year 
�  1.62 ⨉ 107 neutrino 

interactions per year 
¢  1.58 ⨉ 107 muon neutrinos 
¢  2.7 ⨉ 106 electron neutrinos 
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MUON NEUTRINO CROSS SECTIONS
¢  Excellent muon identification. 
¢  Muon catcher designed to 

contain horizontal 2 GeV 
muons. 

¢  With 2 GeV neutrino energy, 
the cross sections almost split 
evenly between CC channels: 
�  Quasi-Elastic (CCQE) 
�  Resonance (Res) 
�  Deep Inelastic Scattering (DIS) 

¢  CCQE analysis already done 
once with NDOS: 
�  See J. Nowak’s talk for more 

CCQE details. 

48. Neutrino Cross Section Measurements 3

48.2. Quasi-elastic scattering

Quasi-elastic (QE) scattering is the dominant neutrino interaction for neutrino energies
less than ∼ 1 GeV and represents a large fraction of the signal samples in many neutrino
oscillation experiments. Historically, neutrino (antineutrino) quasi-elastic scattering refers
to the process, νµ n → µ− p (νµ p → µ+ n), where a charged lepton and single nucleon
are ejected in the elastic interaction of a neutrino (or antineutrino) with a nucleon in
the target material. This is the final state one would strictly observe, for example, in
scattering off of a free nucleon target. Fig. 48.2 displays the current status of existing
measurements of νµ and νµ QE scattering cross sections as a function of neutrino energy.
In this plot, and all others in this review, the prediction from a representative neutrino
event generator (NUANCE) [35] provides a theoretical comparator. Other generators and
more sophisticated calculations exist which can give significantly different predictions [36].
Note that modern experiments have recently opted to report QE cross sections as a
function of final state muon or proton kinematics, much less model-dependent quantities
than neutrino energy [3,14,13].
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Figure 48.2: Measurements of νµ (black) and νµ (red) QE scattering cross sections
(per nucleon) as a function of neutrino energy. Data on a variety of nuclear
targets are shown, including measurements from ANL [37], BEBC [38], BNL [39],
FNAL [40], Gargamelle [41], LSND [42], MiniBooNE [13,14], NOMAD [24],
Serpukhov [43], and SKAT [44]. Shown is the QE free nucleon scattering prediction
from NUANCE [35] assuming MA = 1.0 GeV. This prediction is significantly altered
by nuclear effects in the case of neutrino-nucleus scattering. Although plotted
together, care should be taken in interpreting measurements performed on targets
heavier than D2 due to possible differences in QE selection criteria and kinematics.

December 18, 2013 11:59

A
rb

itr
ar

y 
U

ni
ts

 

Simulation 

PDG 2013  



Martin Frank University of Virginia 38 
 

)2 (GeV2Interaction Q
0 2 4 6 8 100

50

100

150

310×

 CCQEµi
 Resµi
 DISµi
 Cohµi

NC
 CCei

MUON NEUTRINO CROSS SECTIONS
¢  Excellent muon identification. 
¢  Muon catcher designed to 

contain horizontal 2 GeV 
muons. 

¢  With 2 GeV neutrino energy, 
the cross sections almost split 
evenly between CC channels: 
�  Quasi-Elastic (CCQE) 
�  Resonance (Res) 
�  Deep Inelastic Scattering (DIS) 

¢  CCQE analysis already done 
once with NDOS: 
�  See J. Nowak’s talk for more 

CCQE details. 

48. Neutrino Cross Section Measurements 3

48.2. Quasi-elastic scattering

Quasi-elastic (QE) scattering is the dominant neutrino interaction for neutrino energies
less than ∼ 1 GeV and represents a large fraction of the signal samples in many neutrino
oscillation experiments. Historically, neutrino (antineutrino) quasi-elastic scattering refers
to the process, νµ n → µ− p (νµ p → µ+ n), where a charged lepton and single nucleon
are ejected in the elastic interaction of a neutrino (or antineutrino) with a nucleon in
the target material. This is the final state one would strictly observe, for example, in
scattering off of a free nucleon target. Fig. 48.2 displays the current status of existing
measurements of νµ and νµ QE scattering cross sections as a function of neutrino energy.
In this plot, and all others in this review, the prediction from a representative neutrino
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a half-life of 11 ms; the emitted secondary electron pro-
viding a well-defined tag for event identification. The
neutral current channel has an equally favorable chan-
nel, with the emission of a mono-energetic 15.11 MeV
photon.

Studies of the above neutrino cross-sections have
been carried out at the LAMPF facility in the United
States (Willis et al., 1980) and the KARMEN detector at
ISIS at the Rutherford Laboratory in the United King-
dom. The neutrino beam in both experimental facili-
ties is provided from proton beam stops. High energy
proton collisions on a fixed target produce a large ⇡+

flux which is subsequently stopped and allowed to de-
cay. The majority of low energy neutrinos are produced
from the decay at rest from stopped µ+ and ⇡+, pro-
viding a well-characterized neutrino beam with energies
below 50 MeV8. The KARMEN experiment at the ISIS
facility additionally benefited from a well-defined pro-
ton beam structure, which allowed e�cient tagging of
neutrino events against cosmic ray backgrounds. The
main uncertainty a↵ecting these cross-section measure-
ments stems primarily from the knowledge of the pion
flux produced in the proton-target interactions.
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FIG. 6 Cross-section as a function of neutrino energy for the
exclusive reaction 12C(⌫

e

, e�)12N from µ� decay-at-rest neu-
trinos. Experimental data measured by the KARMEN (Zeit-
nitz et al., 1994) and LSND (Athanassopoulos et al., 1997;
Auerbach et al., 2001) experiments. Theoretical prediction
taken from Fukugita et al. (Fukugita et al., 1988).

Table VII summarizes the measurements to date on the
inclusive and exclusive reactions on 12C at low energies.
Estimates of the cross-sections using a variety of di↵erent
techniques (shell model, RPA, QRPA, e↵ective particle
theory) demonstrate the robustness of the calculations.
Some disagreement can be seen in the inclusive channels;

8 Neutrinos from decay-in-flight muons also allowed for cross-
section measurements for energies below 300 MeV.
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FIG. 7 Cross-section as a function of neutrino energy
for the exclusive reaction 12C(⌫

µ

, µ�)12N measured by the
LSND (Auerbach et al., 2002) experiment. Theoretical pre-
diction taken from (Engel et al., 1996).

this disagreement is to be expected since the final state
is not as well-defined as in the exclusive channels. More
recent predictions employing extensive shell model calcu-
lations appear to show better agreement with the experi-
mental data. A plot showing the collected data from the
exclusive reaction 12C(⌫

e

, e�)12N and 12C(⌫
µ

, µ�)12N are
shown in Figures 6 and 7, respectively.

Table VII also lists other nuclei that have been un-
der experimental study. Proton beam stops at the Los
Alamos Meson Physics Facility have also been utilized to
study low energy neutrino cross-sections on 127I. Cross-
sections on iron targets have also been explored with low
energy beams at the KARMEN experiment (Ruf, 2005).

Perhaps the most remarkable of such measurements
was the use of MCi radiological sources for low en-
ergy electron cross-section measurements. Both the
SAGE (Abdurashitov et al., 1999) and GALLEX (Ansel-
mann et al., 1995) solar neutrino experiments have
made use of a MCi 51Cr source to study the reaction
71Ga(⌫

e

, e�)71Ge to both the ground and excited states
of 71Ge. The source strength of 51Cr is typically deter-
mined using calorimetric techniques and the uncertainty
on the final activity is constrained to about 1-2%. The
SAGE collaboration subsequently have also made use of
a gaseous 37Ar MCi source. Its activity, using a variety of
techniques, is constrained to better than 0.5% (Barsanov
et al., 2007; Haxton, 1998). Since 37Ar provides a mono-
energetic neutrino at slightly higher energies that its 51Cr
counterpart, it provides a much cleaner check on the
knowledge of such low energy cross-sections (Barsanov
et al., 2007). Experimental measurements are in general
in agreement with the theory, although the experimental
values are typically lower than the corresponding theo-
retical predictions.

Finally, although the cross-section was not measured
explicitly using a terrestrial source, neutrino capture on

ELECTRON NEUTRINO CROSS SECTIONS
¢  Few electron neutrino cross 

section measurements, 
mostly below 55 MeV. 

¢  Perhaps we can contribute at 
higher energies. 

¢  NOvA designed to detect 
electrons! 

¢  Muon neutrino background 
can easily be removed by 
vetoing on muon track. 

¢  Challenges: 
�  Large flux uncertainties due 

to Kaons at higher energies. 
�  Beat down NC background. 
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a half-life of 11 ms; the emitted secondary electron pro-
viding a well-defined tag for event identification. The
neutral current channel has an equally favorable chan-
nel, with the emission of a mono-energetic 15.11 MeV
photon.

Studies of the above neutrino cross-sections have
been carried out at the LAMPF facility in the United
States (Willis et al., 1980) and the KARMEN detector at
ISIS at the Rutherford Laboratory in the United King-
dom. The neutrino beam in both experimental facili-
ties is provided from proton beam stops. High energy
proton collisions on a fixed target produce a large ⇡+

flux which is subsequently stopped and allowed to de-
cay. The majority of low energy neutrinos are produced
from the decay at rest from stopped µ+ and ⇡+, pro-
viding a well-characterized neutrino beam with energies
below 50 MeV8. The KARMEN experiment at the ISIS
facility additionally benefited from a well-defined pro-
ton beam structure, which allowed e�cient tagging of
neutrino events against cosmic ray backgrounds. The
main uncertainty a↵ecting these cross-section measure-
ments stems primarily from the knowledge of the pion
flux produced in the proton-target interactions.
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Table VII summarizes the measurements to date on the
inclusive and exclusive reactions on 12C at low energies.
Estimates of the cross-sections using a variety of di↵erent
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theory) demonstrate the robustness of the calculations.
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8 Neutrinos from decay-in-flight muons also allowed for cross-
section measurements for energies below 300 MeV.

 (MeV)�E
120 140 160 180 200 220 240

)2
 c

m
-4

2
) (

10
g.

s.
N

12   -
µ  

�
C

  
12   

µ�(
� 0

20

40

60

80

100

120

140 LSND PRC 66, 015501 (2002)

Engel, et al.

FIG. 7 Cross-section as a function of neutrino energy
for the exclusive reaction 12C(⌫

µ

, µ�)12N measured by the
LSND (Auerbach et al., 2002) experiment. Theoretical pre-
diction taken from (Engel et al., 1996).

this disagreement is to be expected since the final state
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mental data. A plot showing the collected data from the
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der experimental study. Proton beam stops at the Los
Alamos Meson Physics Facility have also been utilized to
study low energy neutrino cross-sections on 127I. Cross-
sections on iron targets have also been explored with low
energy beams at the KARMEN experiment (Ruf, 2005).

Perhaps the most remarkable of such measurements
was the use of MCi radiological sources for low en-
ergy electron cross-section measurements. Both the
SAGE (Abdurashitov et al., 1999) and GALLEX (Ansel-
mann et al., 1995) solar neutrino experiments have
made use of a MCi 51Cr source to study the reaction
71Ga(⌫
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, e�)71Ge to both the ground and excited states
of 71Ge. The source strength of 51Cr is typically deter-
mined using calorimetric techniques and the uncertainty
on the final activity is constrained to about 1-2%. The
SAGE collaboration subsequently have also made use of
a gaseous 37Ar MCi source. Its activity, using a variety of
techniques, is constrained to better than 0.5% (Barsanov
et al., 2007; Haxton, 1998). Since 37Ar provides a mono-
energetic neutrino at slightly higher energies that its 51Cr
counterpart, it provides a much cleaner check on the
knowledge of such low energy cross-sections (Barsanov
et al., 2007). Experimental measurements are in general
in agreement with the theory, although the experimental
values are typically lower than the corresponding theo-
retical predictions.

Finally, although the cross-section was not measured
explicitly using a terrestrial source, neutrino capture on
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MAGNETIC MONOPOLES
¢  Exciting analysis possibilities 

with the far detector because of 
its large surface area and 
surface location. 

¢  Magnetic monopoles would be 
highly ionizing or slow moving 
particles. 

¢  The plot on the right shows the 
monopole phase space we have 
access to. 

¢  We have commissioned two 
triggers to search for possible 
monopole candidates: 

1.  look for high energy 
deposition 

2.  look for subluminal speed 
tracks 

magnetic 
monopole 

NOνA:	  	  	  	  	  	  	  	  	  	  4168	  m2	  

MACRO:	  	  	  	  	  	  	  3482	  m2	  

SLIM:	  	  	  	  	  	  	  	  	  	  	  	  	  	  427	  m2	  

OHYA:	  	  	  	  	  	  	  	  	  	  2000	  m2	  

Monopole Trigger Rate 
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1.4 ⨉ 10-16 

SLIM 
1.3 ⨉ 10-15 

RICE 10-19 – 10-18 

90% C.L. Upper Limits on Magnetic Monopole Flux (cm-2 s-1 sr-1) 
Baikal 5 ⨉ 10-17 

AMANDA 2.8 ⨉ 10-17 
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MAGNETIC MONOPOLES
¢  Exciting analysis possibilities 

with the far detector because of 
its large surface area and 
surface location. 

¢  Magnetic monopoles would be 
highly ionizing or slow moving 
particles. 

¢  The plot on the right shows the 
monopole phase space we have 
access to. 

¢  We have commissioned two 
triggers to search for possible 
monopole candidates: 

1.  look for high energy 
deposition 

2.  look for subluminal speed 
tracks 

magnetic 
monopole 

NOνA:	  	  	  	  	  	  	  	  	  	  4168	  m2	  

MACRO:	  	  	  	  	  	  	  3482	  m2	  

SLIM:	  	  	  	  	  	  	  	  	  	  	  	  	  	  427	  m2	  

OHYA:	  	  	  	  	  	  	  	  	  	  2000	  m2	  

Monopole Trigger Rate 
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SUMMARY
¢  Far and Near Detector construction is complete! 
¢  Electronics installation and commissioning is in full swing and 

will finish this summer. 
¢  NuMI beam is stable and power increasing! 
¢  Collecting first data with partial detectors. 
¢  Many analyses are ramping up as the data becomes available: 

�  mass hierarchy, first glimpse at δCP 
�  neutrino cross sections 
�  magnetic monopoles 
�  and many more! 

¢  Stay tuned! 
170+ scientists and engineers 

from 39 institutions from 7 countries 
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JUST FOR FUN
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JUST FOR FUN



BACK UP SLIDES
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PHYSICS REACH (θ23 Octant)

P (⌫µ ! ⌫e)

P
(⌫̄

µ
!

⌫̄ e
)

¢  We know that 
sin2(2θ23) is close to 
unity, but what octant 
does θ23 fall in?  
�  θ23 > 45° 
�  θ23 < 45° 

¢  The probability 
ellipses are given for 
both scenarios 
separated by the green 
dotted line. 
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θ23 OCTANT SENSITIVITY
¢  Given the bi-probability plots, we can calculate how 

sensitive we will be to the θ23 octant: 
�  θ23 > 45° (upper octant) 
�  θ23 < 45° (lower octant) 

θ23 > 45° θ23 < 45° 
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PRECISION MEASUREMENTS

¢  Measure θ23, Δm2
32 to the few percent level 

¢  using νµ disappearance:  P (⌫µ ! ⌫µ)
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PRECISION MEASUREMENTS

¢  Measure θ23, Δm2
32 to the few percent level 

¢  using νµ disappearance:  P (⌫µ ! ⌫µ)

MINOS 
best fit 

NOvA Sensitivity 


