The NOvA Experiment

Martin Frank University of Virginia on behalf of the NOvA Collaboration

NuInt 2014 May 22nd, 2014

INTRODUCTION

• NOvA:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: narrow band beam (2 GeV)
- v_e Appearance

$$P(\nu_{\mu} \to \nu_{e})$$

= $f(\theta_{13}, \theta_{23}, \delta_{CP}, \text{mass hierarchy}, ...)$

- Overview and Status of the Experiment
 First Neutrino Candidates
- Survey Some Physics Goals:
 - Oscillation Physics
 - Neutrino Cross Sections
 - Magnetic Monopoles

hysics Goals

- \bullet θ_{13}
- θ_{23} Octant
- CP-violating Phase Angle δ_{CP}
- Neutrino Mass Hierarchy
- Neutrino Cross Sections
- Neutrino Magnetic Moment
- Sterile Neutrinos
- Dark Matter
- WISPs
- Magnetic Monopoles
- Supernova
- WIMPs
- And More!

INTRODUCTION

• NOvA:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: narrow band beam (2 GeV)
- v_e Appearance

$$P(\nu_{\mu} \to \nu_{e})$$

= $f(\theta_{13}, \theta_{23}, \delta_{CP}, \text{mass hierarchy}, ...)$

- Overview and Status of the ExperimentFirst Neutrino Candidates
- Survey Some Physics Goals:
 - Oscillation Physics
 - Neutrino Cross Sections
 - Magnetic Monopoles

hysics Goals

- \bullet θ_{13}
- θ_{23} Octant
- CP-violating Phase Angle δ_{CP}
- Neutrino Mass Hierarchy
- Neutrino Cross Sections
- Neutrino Magnetic Moment
- Sterile Neutrinos
- Dark Matter
- WISPs
- Magnetic Monopoles
- o Supernova
- WIMPs
- And More!

INTRODUCTION

• NOvA:

- NuMI: Neutrinos at the Main Injector (v_{μ})
- Off-Axis: narrow band beam (2 GeV)
- v_e Appearance

$$P(\nu_{\mu} \to \nu_{e})$$

= $f(\theta_{13}, \theta_{23}, \delta_{CP}, \text{mass hierarchy}, ...)$

- Overview and Status of the ExperimentFirst Neutrino Candidates
- Survey Some Physics Goals:
 - Oscillation Physics
 - Neutrino Cross Sections
 - Magnetic Monopoles

Physics Goals

- \bullet θ_{13}
- θ_{23} Octant
- CP-violating Phase Angle δ_{CP}
- Neutrino Mass Hierarchy
- Neutrino Cross Sections
- Neutrino Magnetic Moment
- Sterile Neutrinos
- Dark Matter
- WISPs
- Magnetic Monopoles
- Supernova
- WIMPs
- And More!

NEUTRINO DETECTION

- We want to detect electron neutrinos (v_e) :
 - This requires a large detector mass and good electron identification.
- Solution: "Fully" Active Detector
 - use low Z materials: PVC extrusions filled with liquid scintillator
 radiation length ~ 40 cm, Molière radius ~ 11 cm
 - provides many samples per radiation length (differentiate e^- and π^0)
 - each extrusion contains one wavelength-shifting fiber
 - ends of fiber read out by avalanche photo-diode (APD)

NEUTRINO DETECTION

- We want to detect electron neutrinos (v_e) :
 - This requires a large detector mass and good electron identification.
- Solution: "Fully" Active Detector
 - use low Z materials: PVC extrusions filled with liquid scintillator
 radiation length ~ 40 cm, Molière radius ~ 11 cm

N

W

- provides many samples per radiation length (differentiate e^- and π^0)
- each extrusion contains one wavelength-shifting fiber
- ends of fiber read out by avalanche photo-diode (APD)

charged-current

interaction

NEUTRINO DETECTION

- We want to detect electron neutrinos (v_e) :
 - This requires a large detector mass and good electron identification.
- Solution: "Fully" Active Detector
 - use low Z materials: PVC extrusions filled with liquid scintillator
 radiation length ~ 40 cm, Molière radius ~ 11 cm
 - provides many samples per radiation length (differentiate e^- and π^0)
 - each extrusion contains one wavelength-shifting fiber
 - ends of fiber read out by avalanche photo-diode (APD)

Martin Frank

University of Virginia

Martin Frank

University of Virginia

Martin Frank

10

University of Virginia

Last Block

- 1 km downstream from NuMI target
- 105 m underground
- 300 tons
- \circ 4 m × 4 m × 15 m
- Muon Catcher:
 - 10 alternating planes of detector and 4 inch steel plates
- Instrumented with 20k channels.
- We also have a prototype detector on the surface (NDOS).
 - See J. Nowak's talk for more NDOS details.

- 1 km downstream from NuMI target
- 105 m underground
- 300 tons
- \circ 4 m × 4 m × 15 m
- Muon Catcher:
 - 10 alternating planes of detector and 4 inch steel plates
- Instrumented with 20k channels.
- We also have a prototype detector on the surface (NDOS).
 - See J. Nowak's talk for more NDOS details.

- 1 km downstream from NuMI target
- 105 m underground
- 300 tons 0
- \circ 4 m × 4 m × 15 m
- Muon Catcher:
 - 10 alternating planes of detector and 4 inch steel plates
- Instrumented with 20k channels.
- We also have a prototype detector on the surface (NDOS).
 - See J. Nowak's talk for more NDOS details.

FAR DETECTOR AT ASH RIVER, MN

ELECTRONICS PROGRESS

Electronics Installed

AND IT WORKS!

- An excerpt from our data quality monitoring from April.
- Collected physics data with 50% of the full detector then.
 - Currently using 70%.
- Hit Rate (top)
 - "physics" hits per second
 - each bin = 1 APD = 32 channels
 - 170k total channels
 - >99% of channels working!

• Muon Track Length (bottom)

- number of tracks / 10³ s
- cosmic ray rate ~ 10⁵ Hz
- We can reconstruct the incoming cosmic rays!

AND IT WORKS!

- An excerpt from our data quality monitoring from April.
- Collected physics data with 0 50% of the full detector then.
 - Currently using 70%.
- Hit Rate (top)
 - "physics" hits per second
 - each bin = 1 APD = 32 channels
 - 170k total channels
 - >99% of channels working!
- Muon Track Length (bottom)
 - number of tracks / 10^3 s
 - cosmic ray rate $\sim 10^5$ Hz
 - We can reconstruct the incoming cosmic rays!

Martin Frank

Y-View

SIMULATED EVENT DISPLAY

REAL EVENT DISPLAY

Martin Frank

University of Virginia

REAL EVENT DISPLAY

Martin Frank

University of Virginia

REAL EVENT DISPLAY (zoomed in)

REAL EVENT DISPLAY (with reconstruction)

Martin Frank

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
- The bold and dotted lines show the 1 and 2 σ contours that we could achieve with:
- 3 years neutrino running plus 3 years anti-neutrino running

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
- The bold and dotted lines show the 1 and 2 σ contours that we could achieve with:
- 3 years neutrino running plus 3 years anti-neutrino running

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
- The bold and dotted lines show the 1 and 2 σ contours that we could achieve with:
- 3 years neutrino running plus 3 years anti-neutrino running

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
- The bold and dotted lines show the 1 and 2 σ contours that we could achieve with:
- 3 years neutrino running plus 3 years anti-neutrino running

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
- The bold and dotted lines show the 1 and 2 σ contours that we could achieve with:
- 3 years neutrino running plus 3 years anti-neutrino running

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
- The bold and dotted lines show the 1 and 2 σ contours that we could achieve with:
- 3 years neutrino running plus 3 years anti-neutrino running

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
- The bold and dotted lines show the 1 and 2 σ contours that we could achieve with:
- 3 years neutrino running plus 3 years anti-neutrino running

- Using the oscillation equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
- The bold and dotted lines show the 1 and 2 σ contours that we could achieve with:
- 3 years neutrino running plus 3 years anti-neutrino running

Mass Hierarchy and δ_{CP} Sensitivity

• Given the plots from the previous slides and using our analysis framework, we can determine how sensitive we will be to resolve the:

Mass Hierarchy and δ_{CP} Sensitivity

- Given the plots from the previous slides and using our analysis framework, we can determine how sensitive we will be to resolve the:
 - Mass Hierarchy (even better with T2K)
 - CP-violating phase angle (δ_{CP})

Results from full simulation, reconstruction, and selection.

Mass Hierarchy and δ_{CP} Sensitivity

- Given the plots from the previous slides and using our analysis framework, we can determine how sensitive we will be to resolve the:
 - Mass Hierarchy (even better with T2K)
 - CP-violating phase angle (δ_{CP})

Results from full simulation, reconstruction, and selection.

First glimpse at $(\delta_{CP})!$

NEUTRINO CROSS SECTIONS

- Target = Near Detector:
 - 2.6×10^{31} nucleons
 - 47% CH₂ (from oil)
 - $40\% C_2H_3Cl$ (from plastic)
- Off-axis beam provides lots of neutrinos:
 - between 1 and 3 GeV
 - with 6×10^{20} POT per year
 - 1.62 × 10⁷ neutrino interactions per year
 - 1.58×10^7 muon neutrinos
 - 2.7×10^6 electron neutrinos

MUON NEUTRINO CROSS SECTIONS

- Excellent muon identification.
- Muon catcher designed to contain horizontal 2 GeV muons.
- With 2 GeV neutrino energy, the cross sections almost split evenly between CC channels:
 - Quasi-Elastic (CCQE)
- CCQE analysis already done once with NDOS:
 - See J. Nowak's talk for more CCQE details.

MUON NEUTRINO CROSS SECTIONS

- Excellent muon identification.
- Muon catcher designed to contain horizontal 2 GeV muons.
- With 2 GeV neutrino energy, the cross sections almost split evenly between CC channels:
 - Quasi-Elastic (CCQE)
 - Resonance (Res)
 - Deep Inelastic Scattering (DIS)
- CCQE analysis already done once with NDOS:
 - See J. Nowak's talk for more CCQE details.

ELECTRON NEUTRINO CROSS SECTIONS

- Few electron neutrino cross section measurements, mostly below 55 MeV.
- Perhaps we can contribute at higher energies.
- NOvA designed to detect electrons!
- Muon neutrino background can easily be removed by vetoing on muon track.
- Challenges:
 - Large flux uncertainties due to Kaons at higher energies.
 - Beat down NC background.

ELECTRON NEUTRINO CROSS SECTIONS

- Few electron neutrino cross section measurements, mostly below 55 MeV.
- Perhaps we can contribute at higher energies.
- NOvA designed to detect electrons!
- Muon neutrino background can easily be removed by vetoing on muon track.
- Challenges:
 - Large flux uncertainties due to Kaons at higher energies.
 - Beat down NC background.

MAGNETIC MONOPOLES

- Exciting analysis possibilities with the far detector because of its large surface area and surface location.
- Magnetic monopoles would be highly ionizing or slow moving particles.
- The plot on the right shows the monopole phase space we have access to.
- We have commissioned two triggers to search for possible monopole candidates:
 - 1. look for high energy deposition
 - 2. look for subluminal speed tracks

Martin Frank

University of Virginia

MAGNETIC MONOPOLES

- Exciting analysis possibilities with the far detector because of its large surface area and surface location.
- Magnetic monopoles would be highly ionizing or slow moving particles.
- The plot on the right shows the monopole phase space we have access to.

MAGNETIC MONOPOLES

- Exciting analysis possibilities with the far detector because of its large surface area and surface location.
- Magnetic monopoles would be highly ionizing or slow moving particles.
- The plot on the right shows the monopole phase space we have access to.
- We have commissioned two triggers to search for possible monopole candidates:
 - look for high energy 1 deposition
 - look for subluminal speed 2. tracks

SUMMARY

- Far and Near Detector construction is complete!
- Electronics installation and commissioning is in full swing and will finish this summer.
- NuMI beam is stable and power increasing!
- Collecting first data with partial detectors.
- Many analyses are ramping up as the data becomes available:
 - mass hierarchy, first glimpse at δ_{CP}
 - neutrino cross sections
 - magnetic monopoles
 - and many more!

• Stay tuned!

170+ scientists and engineers from 39 institutions from 7 countries

JUST FOR FUN

Martin Frank

University of Virginia

JUST FOR FUN

Martin Frank

University of Virginia

BACK UP SLIDES

Physics Reach (θ_{23} Octant)

- We know that $\sin^2(2\theta_{23})$ is close to unity, but what octant does θ_{23} fall in?
 - $\theta_{23} > 45^{\circ}$
 - θ₂₃ < 45°
- The probability ellipses are given for both scenarios separated by the green dotted line.

θ_{23} Octant Sensitivity

- Given the bi-probability plots, we can calculate how sensitive we will be to the θ_{23} octant:
 - $\theta_{23} > 45^{\circ}$ (upper octant)
 - $\theta_{23} < 45^{\circ}$ (lower octant)

PRECISION MEASUREMENTS

PRECISION MEASUREMENTS

Measure θ₂₃, Δm²₃₂ to the few percent level
using ν_μ disappearance: P(ν_μ → ν_μ)