The LAr1-ND experiment

Roxanne Guenette University of Oxford

> NuINT 2014 22 May 2014

The LAr1-ND Collaboration

C. Adams¹, C. Andreopoulos², J. Asaadi³, B. Baller⁴, M. Bishai⁵, L. Bugel⁶, L. Camilleri⁷,
F. Cavanna¹, H. Chen⁵, E. Church¹, D. Cianci⁸, G. Collin⁶, J.M. Conrad⁶, G. De Geronimo⁵,
A. Ereditato⁹, J. Evans¹⁰, B. Fleming^{*1}, W.M. Foreman⁸, G. Garvey¹¹, R. Guenette¹², J. Ho⁸,
C.M. Ignarra⁶, C. James⁴, C.M. Jen¹³, B.J.P. Jones⁶, L.M. Kalousis¹³, G. Karagiorgi⁷,
W. Ketchum¹¹, I. Kreslo⁹, V.A. Kudryavtsev¹⁴, D. Lissauer⁵, W.C. Louis¹¹, C. Mariani¹³,
K. Mavrokoridis², N. McCauley², G.B. Mills¹¹, Z. Moss⁶, S. Mufson¹⁵, M. Nessi¹⁶,
O. Palamara^{*1}, Z. Pavlovic¹¹, X. Qian⁵, L. Qiuguang¹¹, V. Radeka⁵, R. Rameika⁴,
C. Rudolf von Rohr⁹, D.W. Schmitz^{*8}, M. Shaevitz⁷, M. Soderberg³, S. Söldner-Rembold¹⁰,
J. Spitz⁶, N. Spooner¹⁴, T. Strauss⁹, A.M. Szelc¹, C.E. Taylor¹¹, K. Terao⁷, L. Thompson¹⁴,
M. Thomson¹⁷, C. Thorn⁵, M. Toups⁶, C. Touramanis², R.G. Van De Water¹¹, M. Weber⁹,
D. Whittington¹⁵, B. Yu⁵, G. Zeller⁴, and J. Zennamo⁸

¹Yale University, New Haven, CT ² University of Liverpool, Liverpool, UK ³Syracuse University, Syracuse, NY ⁴Fermi National Accelerator Laboratory, Batavia, IL ⁵Brookhaven National Laboratory, Upton, NY ⁶Massachusetts Institute of Technology, Boston, MA ⁷Columbia University, Nevis Labs, Irvington, NY ⁸University of Chicago, Enrico Fermi Institute, Chicago, IL ⁹University of Bern, Laboratory for High Energy Physics, Bern, Switzerland ¹⁰University of Manchester, Manchester, UK ¹¹Los Alamos National Laboratory, Los Alamos, NM ¹²University of Oxford, Oxford, UK ¹³Center for Neutrino Physics, Virginia Tech, Blacksburg, VA ¹⁴University of Sheffield, Sheffield, UK ¹⁵Indiana University, Bloomington, IN ¹⁶CERN, Geneva, Switzerland ¹⁷University of Cambridge, Cambridge, UK

10 US institutions

- 3 DOE National Laboratories
- 6 NSF institutions

7 European institutions

- ▸ CERN
- ▶ 1 Swiss institution
- ▶ 5 UK institutions

*Contact person

Outline

- A Short-Baseline Neutrino Programme at FNAL
 - Motivations
 - Description of the programme
- The LAr1-ND experiment
- Physics reach
 - MiniBooNE low-energy excess
 - Sensitivity to SBL neutrino anomalies
 - Cross-section measurements

Motivations

<u>Current anomalies from:</u> accelerator beams radioactive sources

reactor neutrinos

Experiment	Type	Channel	Significance	
LSND	DAR	$\bar{\nu}_{\mu} \to \bar{\nu}_e \ \mathrm{CC}$	3.8σ	
MiniBooNE	SBL accelerator	$ \nu_{\mu} \rightarrow \nu_{e} \ \mathrm{CC} $	3.4σ	
MiniBooNE	SBL accelerator	$\bar{\nu}_{\mu} \to \bar{\nu}_e \ \mathrm{CC}$	2.8σ	
GALLEX/SAGE	Source - e capture	ν_e disappearance	2.8σ	
Reactors	Beta-decay	$\bar{\nu}_e$ disappearance	3.0σ	

K. N. Abazajian et al. "Light Sterile Neutrinos: A Whitepaper", arXiv:1204.5379 [hep-ph], (2012)

- Control of systematic uncertainties
- Cross-section measurements
- Test bench for LAr R&D for future experiments

22 May 2014

Roxanne Guenette (University of Oxford)

A staged Multi-LAr detector Programme

A staged Multi-LAr detector Programme

Phase 1: LAr1-ND

A <u>LArTPC Near Detector</u> (82 t active mass) in the SciBooNE hall, to run in conjunction with MicroBooNE on the BNB, for an exposure of 2.2x10²⁰ POT (in the last year of the MicroBooNE run)

Why a Near detector?

- ✤ A Near Detector close to the BNB source is a key element in each phase
 - Sample the beam before the onset of L/E dependent physics
 - Provide a high statistics constraint on intrinsic event rates

The LAr1-ND location (SciBooNE experimental hall)

 SciBooNE enclosure (on-axis at 100m from BNB target) is currently empty and is an ideal, <u>ready to</u> <u>use</u>, location

Length (beam direction) = 4.9 m Width = 7.0 m Depth: floor-grade = 8.5 m, floor-ceiling = 11.6 m

LAr1-ND detector design

 Membrane cryostat (supported by outer walls) (5.1m(w) x 4.8m(h) x4.4m(l))

35 ton membrane cryostat prototype constructed and successfully filled and operated at Fermilab 10

22 May 2014

Roxanne Guenette (University of Oxford)

LAr1-ND detector design

• TPC: 2 APAs near the walls and 1 CPA in center

LAr1-ND physics Goals

MiniBooNE low-energy excess

Directly test the anomalous excess of electron neutrino events reported by MiniBooNE

□ In combination with MicroBooNE, much improved sensitivity with a near detector (ND)

Oscillations: v_µ disappearance

Only possible with a ND

Oscillations: Neutral-current disappearance

□ Direct test for sterile neutrino content. Only possible with a ND

Neutrino-argon interactions

- □ 15x the rate compared to MicroBooNE. ~1M events per year.
- □ If low-energy excess determined to be a Standard Model photon production mechanism, LAr1-ND can make measurements of the rate and kinematics with 100s of events per year

Dark matter search with beam off-target running

❑ Requires future beam off-target running.

Sensitivity to MiniBooNE low-energy excess

	Process	Events	Events	MiniBooNE	dE/dx	Total	Error	Error
		(μB)	(LAr1-ND)	unc.	unc.	unc.	(μB)	(LAr1-ND)
	$\mu \rightarrow \nu_e$	21.5	171.3	0.26	0.1	0.28	6.0	47.7
MICROBOONE WIII TEIL IT THE excess is electrons or gammas	${\rm K}^+ \rightarrow \nu_e$	6.4	51.3	0.22	0.1	0.24	1.55	12.4
	$\mathrm{K}^0 \rightarrow \nu_e$	1.8	14.7	0.38	0.1	0.39	0.73	5.79
	$\nu_{\mu} \ \mathrm{CC}$	4.9	38.9	0.26	0.0	0.26	1.27	10.1
	$\nu_{\mu}e \rightarrow \nu_{\mu}e$	3.8	30.7	0.25	0.1	0.27	1.03	8.26
	NC π^0	6.7	53.4	0.13	0.1	0.16	1.10	8.77
	Dirt	0.9	6.9	0.16	0.1	0.19	0.16	1.31
	$\Delta \to N\gamma$	2.5	19.8	0.14	0.1	0.17	0.43	3.40
	Other	0.9	7.6	0.25	0.1	0.27	0.26	2.04
	Total	49.4	322.1				6.55	52.23
LAr1-ND increases the				MicroE	BooNE	L	Ar1-ND	
significance AND will	Total Events			9'	7		775	
determine if the expect is	"Low-energy Excess"		47	.6		380		
	Background			49	.4		394.6	
inherent to the beam or	Statistical Error			7.	0		19.9	
to oscillations	Systematic Error			6.	6		52.2	
	Total Error			9.	6		55.9	
	Statistical Significance of Excess		6.8	σ		19.1 σ		
	Total Significance of Excess			5.0	σ		6.8 σ	

An estimate of systematics based on MiniBooNE analysis indicates a $>6.5\sigma$ observation of a MiniBooNE-like excess

Sensitivity to neutrino anomalies $v_{\mu} \rightarrow v_{e}$ Appearance

- Testing $v_{\mu} \rightarrow v_{e}$ appearance in the context of a 3 active + 1 sterile neutrino model (3+1)
- Predicted event rates come from full Geant4 Monte Carlo and expected e/γ shower separation in a LAr TPC, not flat scaling of generator level event topologies
- Produce realistic reconstructed neutrino energy spectrum using calorimetric reconstruction
- The observed electron candidate event rate in LAr1-ND at 100m is used to constrain the expected rate (in the absence of oscillations) in MicroBooNE at 470m

2.2x10²⁰ POT exposure for LAr1-ND

6.6x10²⁰ POT exposure for MicroBooNE

Sensitivity to neutrino anomalies $v_{\mu} \rightarrow v_{e}$ Appearance

+ND

 $\begin{array}{l} \textbf{6.6x10^{20} POT exposure for MicroBooNE} alone, \\ assuming 20\% systematic uncertainties \\ on \nu_e \text{background prediction} \end{array}$

Same MicroBooNE exposure + 2.2x10²⁰ POT exposure for LAr1-ND to constrain background prediction

Roxanne Guenette (University of Oxford)

Sensitivity to neutrino anomalies v_{μ} Disappearance

Neutrino-Argon Interactions

	GENIE estimated event rates		
Process	2.2x10 ²⁰ POT exposure for LAr1-ND	No. Events	I Ar I-ND provides a great
CC Inclusive CC 0 π	e $ \begin{array}{c} \nu_{\mu} Events \ (By \ Final \ State \ Topology) \\ \nu_{\mu}N \rightarrow \mu + Np \\ \cdot \nu_{\mu}N \rightarrow \mu + 0p \\ \cdot \nu_{\mu}N \rightarrow \mu + 1p \\ \cdot \nu_{\mu}N \rightarrow \mu + 2p \\ \cdot \nu_{\mu$	787,847 $535,673$ $119,290$ $305,563$ $54,287$ $56,533$	venue to conduct high statistics precision cross section measurements in the
CC 1 π^{\pm}	$\nu_{\mu} N \rightarrow \mu + \text{nucleons} + 1\pi^{\pm}$	176,361	i Gevenergy runge
$\begin{array}{c} \mathrm{CC} \geq 2\pi^{\pm} \\ \mathrm{CC} \geq 1\pi^{0} \end{array}$	$ \nu_{\mu}N \rightarrow \mu + \text{nucleons} + \geq 2\pi^{\pm}$ $ \nu_{\mu}N \rightarrow \text{nucleons} + \geq 1\pi^{0}$	14,659 76,129	Event rates based on categorization
NC Inclusiv	e	300,585	in terms of exclusive experimental
NC 0 π	$ u_{\mu}N \rightarrow \text{nucleons} $	$206,\!563$	topologios
NC 1 π^{\pm}	$ u_{\mu}N \rightarrow \text{nucleons} + 1\pi^{\pm}$	$39,\!661$	topologies
$NC \ge 2\pi^{\pm}$	$ u_{\mu}N \rightarrow \text{nucleons} + \geq 2\pi^{\pm}$	5,052	
$NC \ge 1\pi^0$	$ u_{\mu}N ightarrow ext{nucleons} + \ge 1\pi^{0}$	54,531	
	$ u_e Events$		
CC Inclusiv	e	5,883	
NC Inclusiv	e	2,098	
Total ν_{μ} and	d ν_e Events	1,096,413	total events per ~year
	ν_{μ} Events (By Physical Process)		
CC QE	$ u_{\mu}n \rightarrow \mu^{-}p$	470,497	Energy threshold on protons: 21 MeV.
CC RES	$ u_{\mu}N ightarrow \mu^-N$	$220,\!177$	The 0π topologies include any number
CC DIS	$ u_{\mu}N ightarrow \mu^{-}X$	82,326	of neutrons in the event
CC Coheren	$ht \qquad \qquad \nu_{\mu}Ar \to \mu Ar + \pi$	3,004	or neutrons in the event.
22 May	2014 Roxanne Gu	enette (Univers	sity of Oxford) 17

NuMI Off-Axis Angles

- To LAr1-ND: ~30°
- To MicroBooNE: ~8°

NuMI Event Rates

22 May 2014

Roxanne Guenette (University of Oxford)

We are still optimising

- We have studied (and are studying) many design details, systematics effects, and physics models
- Example: muon containment study

Conclusion

- Clear scientific motivations for a Near Detector
 in the BNB
- Great statistics available for cross-section
 measurements
- It gives a test bench for R&D and for expertise expansion
- It opens the door for definitive answer to the SBL anomalies with a 3 detector experiments

Backup

Fluxes at LAr1 in nu mode (100m)

Flux from NuMI in nu mode at 100m

25

Fluxes (nu mode MicroBooNE) Flux from NuMI in nu mode at 470m

Anode Plane Assembly

➤ Each APA holds three planes of wires (U, V and Y) on one side. The wire pitch (3 mm) and angles (0⁰ and ±60⁰ from vertical) are identical to that of MicroBooNE

Single sided APA: uses the same wire bonding method developed for the LBNE APAs, but without the continuous helical wrapping, to minimize ambiguities in track reconstruction.

Each wire is connected to a front-end readout channel. The wire readout arrangement is also identical to MicroBooNE, with <u>cold electronics boards</u> at the top and vertical sides of each APA The <u>total number of readout channels is 4736 per APA (9472 in the entire detector)</u>

²² ^MCorner View of an APA. Wires at 0^o (collection plane) and ±60^o from vertical (2 induction planes) are attached to wire bonding boards at the sides and ends of the APA.

Readout Electronics & DAQ

- The electronic readout chain is implemented as CMOS ASICs designed for operation in LAr, and commercial FPGAs (multiplexing). Both analog Front End (FE) ASIC and ADC ASIC have already been developed for LBNE, and analog FE ASIC is being used in MicroBooNE
- > 8 FE, 8 ADC plus a FPGA comprise a single <u>128-channel front end mother board</u>

- \succ The FPGA on each motherboard transmit data out of the cryostat through a feedthrough to the DAQ system.
- The DAQ system is located external to the cryostat vessel, with components in the detector hall and in an on-site control room. It consists of the Warm Interface Module (WIM), timing system, and 28 commodity Data Concentrator Modules (DCM); hetwork swatch and computing farm

Mother Board

Nother Board

36 64-ch FE Mother Boards per APA: 2,304-ch

Nother Board

.....

2 APAs: Total 9,472 Channels

Detector Hall

Crvostat

Nother Board

19 128-ch FE Mother Boards per APA: 2,432-ch

Trigger - Light Collection

> Detection of scintillation light plays several important roles in LAr TPCs:

- For a surface detector in a beam, like LAr1-ND, the scintillation light provides a tag of events in-time with the beam pulse, allowing rejection of cosmic rays;
- > The light also provides the T₀ for non-accelerator events (such as supernova events);
- If a suitable <u>high efficiency light collection system</u> is in use, energy deposited into light can be related to energy deposited into charge for an improved calorimetric reconstruction.

A compact light-guide-based system has been proposed as Photon Detector (PD) for LBNE (acrylic bars read out by silicon photomultipliers, SiPMs). The results of an R&D program show that, while more development is still necessary, the system works properly and is proposed as the basic design for light collection in the LAr1-ND detector

However, the relatively small volume of LAr1-ND provides an <u>excellent test-bed for light</u> <u>collection systems</u> being designed and optimized for LBNE and for studies of the light collection efficiency as a function of the photocathode coverage

Estimation of Costs

- The construction costs for LAr1-ND are estimated based on <u>recent experience at Fermilab</u> from building related LAr projects including <u>MicroBooNE</u>, the LBNE 35 ton membrane cryostat, and the Liquid Argon Purity Demonstrator (LAPD)
- The total project cost for the detector, modifications to the conventional facilities, and project management is estimated at \$13M

Item	Estimated Cost [*]
1. Enclosure	\$0.3M
2. Cryostat	2.5M
3. Cryogenic System	3.0M
4. Time Projection Chamber (TPC)	2.0M
5. Front-end TPC Electronics	1.5M
6. Light Detection System	0.5M
7. Readout, Trigger and DAQ	0.5M
8. Integration and Installation	1.0M
Total Construction Costs	\$11.3M
Project Management at 15%	1.7M
Project Total	\$13M

*not including contingency

Roxanne Guenette (University of Oxford)

Phase 2: LAr1-FD

Full programme sensitivity

Roxanne Guenette (University of Oxford)