NuWro: Wrocław Neutrino Event Generator

Tomasz Golan *(University of Wrocław)* and Paweł Przewłocki *(National Center for Nuclear Research, Warsaw)*

Nulnt14, 19-24.05.2014

Introduction

General information

Introduction

Multi-nucleon

Detector geometry

Iniwersytet

Wrocławski

NuWro online

NuWro is a Monte Carlo neutrino event generator, which has been developed for over 9 years at the Wrocław University by:

Cezary Juszczak Jan Sobczyk Jarosław Nowak Tomasz Golan a significant contribution from: Krzysztof Graczyk Jakub Żmuda and others

The authors were encouraged by Danuta Kiełczewska.

The open-source C++ code is available in the repository:

http://borg.ift.uni.wroc.pl/gitweb/?p=nuwro

General information

Introduction

Multi-nucleon

Detector geometry

NuWro online

PRIMARY INTERACTIONS

quasi-elastic scattering

 $\Delta(1232) \rightarrow \pi$ production

deep inelastic scattering

coherent π production

two-body current

Llewellyn-Smith formalism

Adler-Rarita-Schwinger

quark-parton model

Rein-Sehgal model

IFIC (Nieves et al.) model MEChM-like model Transverse Enhancement*

*MEChM = Martini-Ericson-Chanfray-Marteau

We thank Marco Martini for consultations in our implementation, but we also warn users that it is different than the original MEChM model.

We thank Juan Nieves and collaborators for providing us his original source code.

General information

Introduction

Multi-nucleon

Detector geometry

NuWro online

NUCLEUS MODELS

 \rightarrow local and "global"

Spectral function

Fermi gas

 \rightarrow for ^{12}C , ^{16}O , ^{40}Ar , ^{40}Ca , ^{56}Fe

FINAL STATE INTERACTIONS

Intra-nuclear cascade for pion:

 \rightarrow Oset et al. model for kinetic energies up to $350~{\rm MeV}$

 \rightarrow a phenomenological approach for higher energies

Intra-nuclear cascade for nucleon:

 \rightarrow a phenomenological approach with an effective nuclear potential

OTHER FEATURES

- ability to use a realistic beam
- ability to use a detector geometry

Multi-nucleon knockout

Two-body current

Introduction

Multi-nucleon

Two-body current Nieves et al. model Kinematics Spectral function NN xsec

Protons multiplicity

Detector geometry

NuWro online

OUR STRATEGY FOR TWO-BODY CURRENT CONTRIBUTION

- It is very important for the community to have a chance to use various models.
- We are very grateful to authors of theoretical models who share with us their original codes.
- In case we do not have access to important models we are trying to develop approximate approaches.

Nieves et al. model

FIRST APPROACH

Tables for ${}^{12}C(\nu_{\mu},\mu^{-})$ $\rightarrow d^{2}\sigma/dT_{\mu}d\cos\theta_{\mu}$

 \rightarrow ~~ 40 values for E_{ν} from 155 MeV to 2995 MeV

 \rightarrow for each E_{ν} 40x40 table for T_{μ} and $\cos\theta_{\mu}$

Extension for higher E_{ν}

→ Gran, Nieves, Sanchez, Vicente Vacas [PRD 88 (2013) 113007]

 $\rightarrow~$ cut in momentum transfer $|\vec{q}_{max}| = 1.2~{\rm GeV}$

Note, similar approach is currently used in NEUT.

CURRENT APPROACH

Nucleus "knows": It "o

 $\rightarrow q = (q_0, \vec{q}) \rightarrow$ lepton mass

$$\rightarrow$$
 type of int. \rightarrow its energy

$$\frac{\mathsf{d}^3\sigma}{\mathsf{d}\Omega'\mathsf{d}E'}\sim\sum_{i=1}^5 W_i(q_0,\vec{q})f_i$$

• f_i depend on lepton kinematics

• $W_i \rightarrow$ response functions depend on nucleus type, channel and fourmomentum transfer

Knowing W_i one can calculate doubledifferential cross section for each kind of neutrino and with no energy limit. Both approaches give the same results.

from J. Żmuda, Vanish Valencia workshop

See J. Żmuda "Meson Exchange Currents models in NuWro Monte Carlo generator" for details.

Iniwersytet

Wrocławski

Hadron kinematics for two-body current

Introduction

Multi-nucleon

Two-body current Nieves et al. model

Kinematics

Spectral function NN xsec Protons multiplicity

Detector geometry

NuWro online

All of them give predictions for lepton kinematics only!

 \rightarrow Four-momentum transfer q is shared by two nucleons with four-momenta p_1 and p_2 .

 \rightarrow In the CMS frame the direction of momentum \vec{p} is selected uniformly:

$$q + p_1 + p_2 \xrightarrow{CMS} (E^{CMS}, 0)$$
$$p_3^{CMS} = (E^{CMS}/2, \vec{p})$$
$$p_4^{CMS} = (E^{CMS}/2, -\vec{p})$$

 $\rightarrow p_3$ and p_4 are obtained by preforming boost back to the LAB frame.

Spectral function

Spectral function:

 $P_{total}(\vec{p}, E) = P_{MF}(\vec{p}, E) + P_{corr}(\vec{p}, E)$

About 20% of interactions occur on a correlated nucleon.

The spectator is now also knock out in NuWro.

to be improved.

Nucleon-nucleon cross section

Introduction

Multi-nucleon Two-body current Nieves et al. model Kinematics Spectral function NN xsec Protons multiplicity

Detector geometry

NuWro online

 \rightarrow Usually, free nucleon-nucleus cross sections are used in nucleon cascade models.

 \rightarrow Effective density dependent NN cross section:

Pandharipande, Pieper PRC45 (1992) 791

 \rightarrow In medium NN cross section becomes much smaller.

Important in MEC studies!

ArgoNeuT preliminary results

- \rightarrow K. Partyka "Exclusive 1mu+np topologies in ArgoNeuT" NuInt12
- \rightarrow O. Palamara "QE or not QE, that is the question" INT workshop, Seattle, 2013

Observable

- ightarrow number of protons ($T_k\gtrsim 22\,$ MeV) in the final state
- \rightarrow no pion in the final state

	u m	node	$\overline{ u}$ mode		
No. of protons	Data	NuWro	Data	NuWro	
0	14	15.4	67.7	64.9	
1	48	50.8	23.7	22.7	
2	26	17.8	6.4	8.0	
3	12	9.6	1.4	2.8	
more	0	6.3	1.0	1.6	

errors are of the order of 20%

Detector geometry

Detector geometries and flux information in NuWro

- NuWro can now make simulations in a real detector environment
 - ROOT geometry definitions supported
 - spatial distribution of materials with given density and composition
 - extremely fast simulation code
 - vertex position/outgoing particles are saved
 - can be further used in detector simulation software
- This feature has already been used in T2K experiment (see next slide)

- Beam flux files are supported
 - NuWro can read neutrino by neutrino from flux files generated by beam MC
 - important for off-axis experiments

Detectors in NuWro – ND280@T2K

- An example of usage: simulation for ND280 near detector of the T2K experiment
- A set of samples prepared to study possibilities of multi-nucleon (np-nh, MEC) events' selection
 - NuWro has got implementations of two multi-nucleon models: Nieves and Martini-Marteau
- Several samples generated in different regions of the detector
- and subsequently processed using full detector simulation
 - Output can be directly compared with data
 - Analysis in progress

Vertex distribution (left) of NuWro simulated events using the ND280 geometry (left: full inner detector and right: FGD1 only - single scintillator bars visible). The denser parts contain more vertices

Detectors in NuWro – ND280@T2K (2)

ND280 NuWro simulation workflow

An example event display (above) of a NuWro generated event (CCQE), a muon and a proton are visible (both are properly reconstructed)

NuWro-generated samples are used in the T2K studies of **np-nh contribution** in ND280 tracker data

NuWro online

Introduction	Introd	uction
--------------	--------	--------

Multi-nucleon

Detector geometry

NuWro online Summary

The on-line graphical interface for NuWro is now available:

http://nuwro.ift.uni.wroc.pl

- \rightarrow setting parameters
- \rightarrow running simulations
- \rightarrow making plots

NuWro online

Introduction

Multi-nucleon

Detector geometry

NuWro online

Summary

N PROMOCINICAL			
NUWFO	Charts Register He	elp	
Nuwro»Run	ı		
a an			
version			
nuwroi	- TB		
random	seed		
	0	Control the random seed persistence 0 - use time(NULL) as a	
		seed for random number generator 1 - read state from file	
		"random_seed" or use seed=time(NULL) if file not found other values - use given number as the seed for the	
		generator	
number	r of events		
1	100000	The number of equally weighted events to be saved	
number	r of test events		
	1000000	The number of events used to calculate the cross sections	
save tes	st events		
		avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted eventsout root	
	user events	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section	
	user events	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section	
	user events • Normal nuwr beam type • 0 • 1 • •	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section ro run Fit axial mass to MiniBoone data Enable axial mass analysis 2 select from file	
	user events Normal nuwr beam type 0 1 	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section rro run Fit axial mass to MiniBoone data Enable axial mass analysis 2 select from file	
	user events Normal nuwr beam type 0 0 1 0 beam energy	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section rro run Fit axial mass to MiniBoone data Enable axial mass analysis 2 select from file	
	user events Normal nuwr beam type 0 0 1 0 beam energy 1000	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section rro runFit axial mass to MiniBoone dataEnable axial mass analysis 2select from file 	
	user events Normal nuwr beam type 0 0 1 0 beam energy 1000 beam particle	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section rro run Fit axial mass to MiniBoone data Enable axial mass analysis 2 select from file beam particle energy in [MeV], (Monochromatics beam)	
	user events Normal nuwr beam type 0 0 1 0 beam energy 1000 beam particle 14	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section rro runFit axial mass to MiniBoone data Enable axial mass analysis 2select from file beam particle energy in [MeV], (Monochromatics beam) PDG code of the beam particles	
	user events Normal nuwr beam type 0 0 1 0 beam energy 1000 beam particle 14 beam direction	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section rro runFit axial mass to MiniBoone data Enable axial mass analysis 2select from file beam particle energy in [MeV], (Monochromatics beam) PDG code of the beam particles n	
	user events Normal nuwr beam type 0 0 1 0 beam energy 1000 beam particle 14 beam direction 0 0 1	avg(weight)=total cross section 2 - test events of nonzero weight are finalized and stored in weighted.eventsout.root avg(weight)=total cross section rro run Fit axial mass to MiniBoone data 2 select from file beam particle energy in [MeV], (Monochromatics beam) PDG code of the beam particles n x y z cordinates of the beam direction	

NuWro online

Introduction

Multi-nucleon

Detector geometry

NuWro online

Summary

1. The simulation is done on our server

	Nuwro	Charts	Register	Help					Login
<u> 1ain</u>	»Nuwro								
0	Nuwro ha	s been start	ted						
Num	ber <mark>of</mark> runni	ng process	es: 1						
S	itarted at 2	014- <mark>05-0</mark> 7	12:40:07						
1	Jpdating dyn n	ratio	sigma[cm2]	 		 	 	
	9 42409 1 17270	0.4240 0.1727	87 5.8593 05 2.3861	9e-39 8e-39					
	2 28140 3 10511	0.28	14 3.8879 09 1.4522	6e-39 4e-39					
4	4 26 0 5 186 0	0.000261	417 3.611 39 2.5731	87e-42 .7e-41					
-	5 930 0 7 528 0	0.009295	45 1.2843 77 7.2947	e-40 9e-41					0
	3 0 9 0		0	0 0					
					17.2 % of ev	ents ready.			

2. The output ROOT file is stored on our server, but one can download it.

One can use already defined types of charts or define its own

et parains		
Select files	177.root, ver: nuwro11n	178.root, ver: nuwro11n
	176.root, ver: nuwro11n	
	152.root, ver: nuwro11m	
	149.root, ver: nuwro11m	
	148.root, ver: nuwro11m	
Select chart types	out[0].t:out[1].t	
	r.x:r.z	
	r.x:r.y	
	r.x:r.z, LEGO2	
	r.x:r.z, LEGO3	
ew type		
Label	Pi0 momentum	
varexp	post.momentum()	
coloction		
Sciection	post.pug == 111	
option		
10.5 million		
nevents		

htemp Entries 11704 600 Mean 253.9 RMS 151.8 500 400 300 200 100 0 200 400 600 800 1200 1000 post.momentum()

post.momentum() {post.pdg==111}

Uniwersytet Wrocławski	Summary
Introduction Multi-nucleon Detector geometry	
NuWro online Summary	1. NuWro is a complete tool to analyze the data.
	2. All major neutrino interaction types are included.
	3. There are several models of two-body current contribution.
	4. The realistic beam as well as detector geometry can be used.
	5. There is a graphical on-line interface.
Detector geometry NuWro online Summary	 NuWro is a complete tool to analyze the data. All major neutrino interaction types are included. There are several models of two-body current contribution. The realistic beam as well as detector geometry can be used. There is a graphical on-line interface.