Particle Production from MiniBooNE and T2K to MINERvA and LBNE

Ulrich Mosel with Olga Lalakulich, Kai Gallmeister

Institut für Theoretische Physik

Neutrino GiBUU Publications since NUINT2012

 "Reaction Mechanisms at MINERνA"
 U. Mosel, O. Lalakulich and K. Gallmeister. arXiv:1402.0297 [nucl-th]
 10.1103/PhysRevD.89.093003
 Phys. Rev. D 89, 093003 (2014)

 "Energy reconstruction in the Long-Baseline Neutrino Experiment"
 U. Mosel, O. Lalakulich and K. Gallmeister. arXiv:1311.7288 [nucl-th]
 10.1103/PhysRevLett.112.151802
 Phys. Rev. Lett. 112, 151802 (2014)

- "Pion production in the T2K experiment"
 O. Lalakulich and U. Mosel. arXiv:1305.3861 [nucl-th]
 10.1103/PhysRevC.88.017601
 Phys. Rev. C 88, no. 1, 017601 (2013)
- 4. "Pion production in the MiniBooNE experiment"
 O. Lalakulich and U. Mosel. arXiv:1210.4717 [nucl-th] 10.1103/PhysRevC.87.014602
 Phys. Rev. C 87, 014602 (2013)

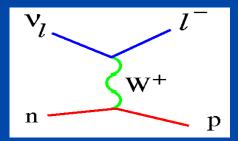
5. "Energy reconstruction in quasielastic scattering in the MiniBooNE and T2K experiments"

O. Lalakulich, U. Mosel and K. Gallmeister.
 arXiv:1208.3678 [nucl-th]
 10.1103/PhysRevC.86.054606
 Phys. Rev. C 86, 054606 (2012)

6. "Neutrino- and antineutrino-induced reactions with nuclei between 1 and 50 GeV"
O. Lalakulich, K. Gallmeister and U. Mosel. arXiv:1205.1061 [nucl-th] 10.1103/PhysRevC.86.014607
Phys. Rev. C 86, 014607 (2012)

 "Many-Body Interactions of Neutrinos with Nuclei - Observables"
 O. Lalakulich, K. Gallmeister and U. Mosel. arXiv:1203.2935 [nucl-th] 10.1103/PhysRevC.86.014614
 Phys. Rev. C 86, 014614 (2012)

Motivation and Contents


- Determination of neutrino oscillation parameters and axial properties of nucleons and resonances requires knowledge of neutrino energy and momentum transfer
- Neutrino beams are broad in energy
- Modern experiments use nuclear targets
- Nuclear effects affect event characterization, cross section measurements, neutrino energy reconstruction and, consequently, oscillation parameters

Energy Reconstruction by QE

In QE scattering on nucleon at rest, only *l* +*p*, 0 π, is outgoing. lepton determines neutrino energy:

$$E_{\nu} = \frac{2M_{N}E_{\mu} - m_{\mu}^{2}}{2(M_{N} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Trouble: all presently running exps use nuclear targets
 Nucleons are Fermi-moving
 Final state interactions may hinder correct event identification

NUINT 2014

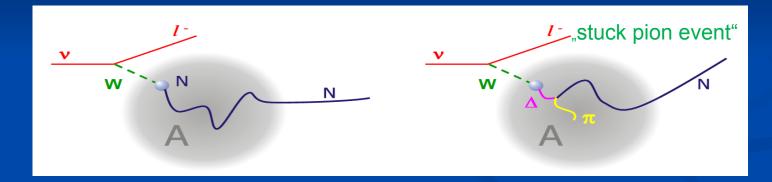
für ische Physik

GiBUU : Theory and Event Generator
 based on a BM solution of Kadanoff-Baym equations

 Physics content and details of implementation in:
 Buss et al, Phys. Rept. 512 (2012) 1- 124

 Code available from gibuu.hepforge.org

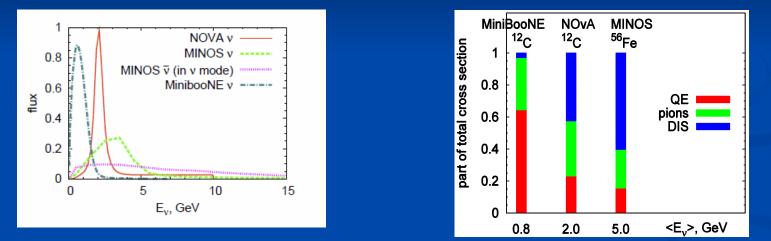
Mine of information on theoretical treatment of potentials, collision terms, spectral functions and cross sections, useful for any generator


Reaction Types

- 2 major reaction types relevant:
- 1. QE scattering
 - true QE (single particle interaction)
 - many-particle interactions (RPA + 2p2h + spectral functions)
- 2. Pion production
 - through nucleon resonances
 - IL through DIS
- All reaction types are entangled: final states may look the same

Final State Interactions in Nuclear Targets

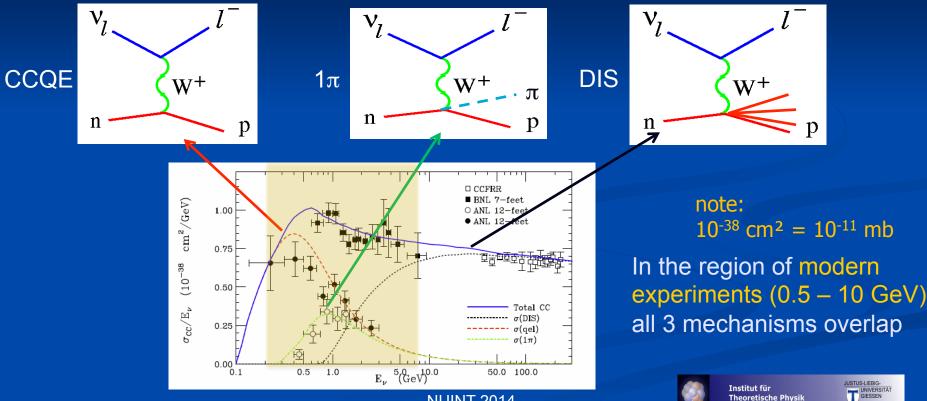
Complication to identify QE, entangled with π production Both must be treated at the same time! Nuclear Targets (K2K, MiniBooNE, T2K, MINOS, Minerva,)



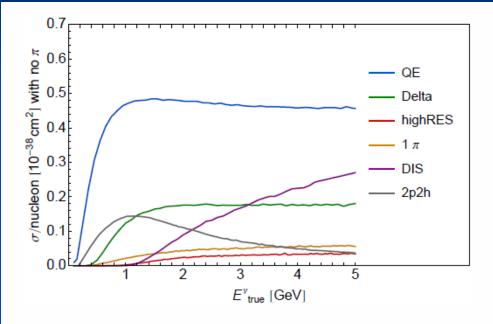
- UNIVERSI

Neutrino Beams

Neutrinos do not have fixed energy nor just one reaction mechanism


Have to reconstruct energy from final state of reaction Different processes are entangled ISTUS J IFRIC

NUINT 2014


UNIVERSITA

Neutrino-nucleon cross section

0 Pion Events from GiBUU

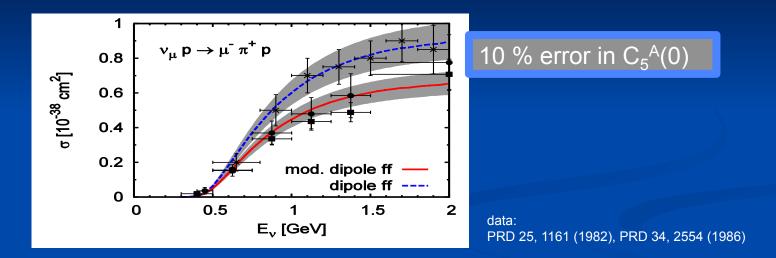
From Coloma & Huber: arXiv:1307.1243v1

Pion production dominated by P₃₃(1232) resonance (not just a heavier nucleon)

$$\begin{split} J_{\Delta}^{\alpha\mu} = & \left[\frac{C_{3}^{V}}{M_{N}} (g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu}) + \frac{C_{4}^{V}}{M_{N}^{2}} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + \frac{C_{5}^{V}}{M_{N}^{2}} (g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu}) \right] \gamma_{5} \\ & + \frac{C_{3}^{A}}{M_{N}} (g^{\alpha\mu} \not\!\!/ - q^{\alpha} \gamma^{\mu}) + \frac{C_{4}^{A}}{M_{N}^{2}} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + C_{5}^{A} g^{\alpha\mu} + \frac{C_{6}^{A}}{M_{N}^{2}} q^{\alpha} q^{\mu} \end{split}$$

C^V(Q²) from electron data (MAID analysis with CVC)

 C^A(Q²) from fit to neutrino data (experiments on hydrogen/deuterium), so far only C^A₅ determined, for other axial FFs only educated guesses



Pion production amplitude = resonance contrib + background (Born-terms) Resonance contrib V determined from e-scattering (MAID) A from PCAC ansatz Background: \blacksquare Up to about Δ obtained from effective field theory Beyond Δ unknown 2 pi BG totally unknown

USTUS J IEBIG

UNIVERSITÄ

discrepancy between elementary data sets →impossible to determine 3 axial formfactors New pion data on elementary target desparately needed! NUINT 2014

from: Phys.Rev. C87 (2013) 014602

1p-1h-1 π X-section:

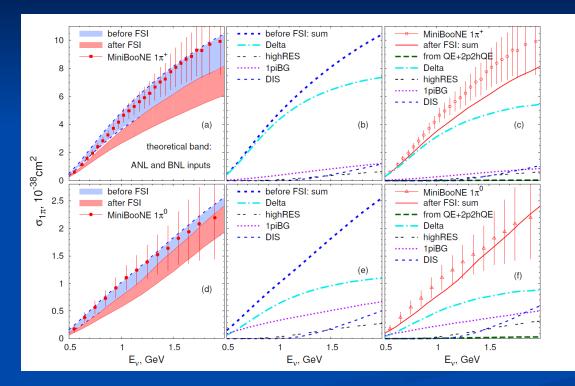
$$\mathrm{d}\sigma^{\nu A \to \ell' X \pi} = \int \mathrm{d}E \int \frac{\mathrm{d}^3 p}{(2\pi)^3} P(\mathbf{p}, E) f_{\mathrm{corr}} \,\mathrm{d}\sigma^{\mathrm{med}} P_{\mathrm{PB}}(\mathbf{r}, \mathbf{p}) F_{\pi}(\mathbf{q}_{\pi}, \mathbf{r}) \;.$$

Hole spectral function

$$P(\mathbf{p}, E) = g \int_{\text{nucleus}} d^3 r \,\Theta \left[p_{\text{F}}(\mathbf{r}) - |\mathbf{p}| \right] \Theta(E) \delta \left(E - m^* + \sqrt{\mathbf{p}^2 + m^{*2}} \right)$$

Pion fsi (scattering, absorption, charge exchange) handled by transport, Includes Δ transport, consistent width description of Delta spectral function, detailed balance

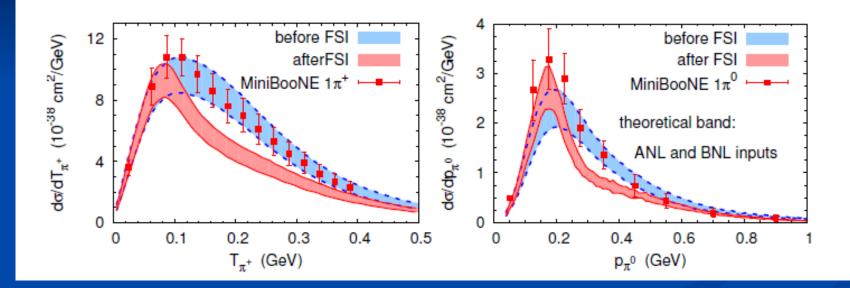
NUINT 2014



JUSTUS-LIEBIG-UNIVERSITĂ GIESSEN

- In-medium self-energy of Delta from Oset et al.
- In-medium self-energy consistent with collision terms in cascade (2 and 3 body coll)
- Calculations include on top of resonance 1-pi decays also 2pi decay channels and semi-inclusive production through DIS

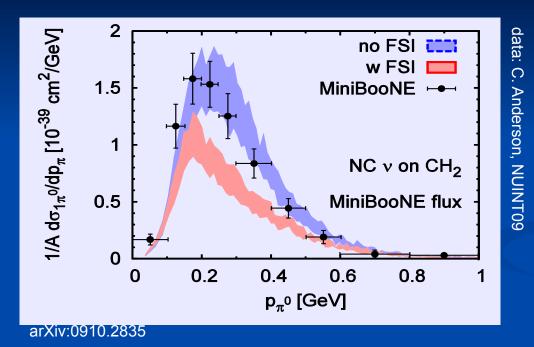
Pions in MiniBooNE


Only BNL input comes close to data

Δ dominant only up to about 0.8 GeV

Pion Spectra in MB

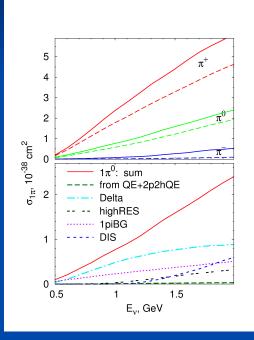
GiBUU results confirmed by Hernandez & Nieves

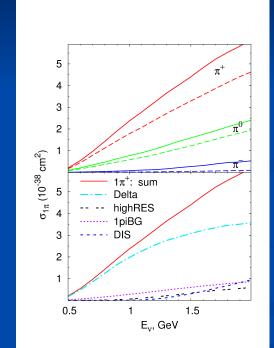

NUINT 2014

Theoretische Physik

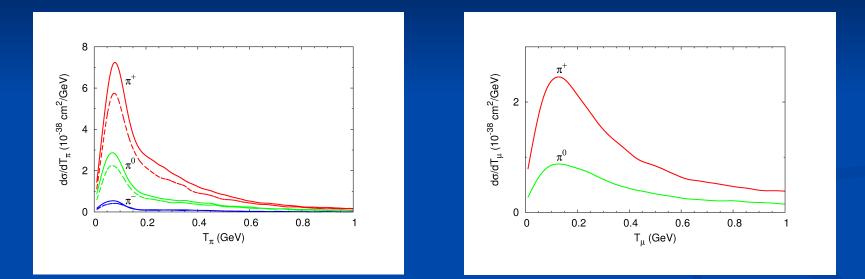
ISTUS JIERI UNIVERSIT.

MiniBooNE NC $1\pi^0$


Hard to understand: pion data agree with Fermi-motion folded free cross cection, but fsi must be there


bands: uncertainty of axial form factor

Pion Production in T2K

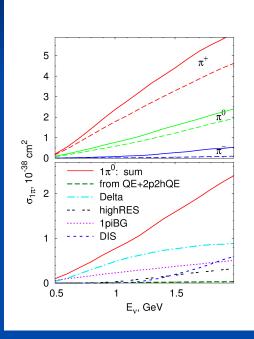

Δ dominant only up to 0.8 GeV

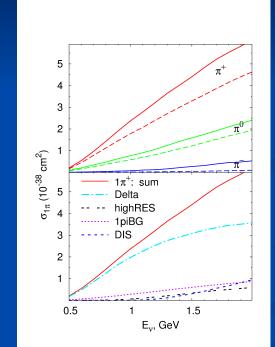
Measurement of pion production between about 0.5 and 0.8 GeV would be clean probe of Δ dynamics.

Pion Production in T2K

T2K pion data may help to distinguish between ANL and BNL input

NUINT 2014

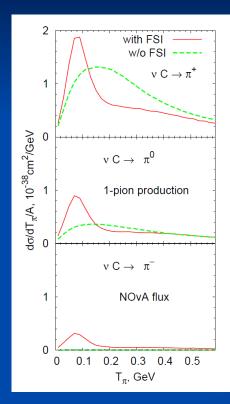

Theoretische Physik

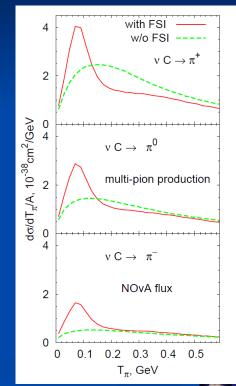

JUSTUS-LIEBIG

UNIVERSITÄT

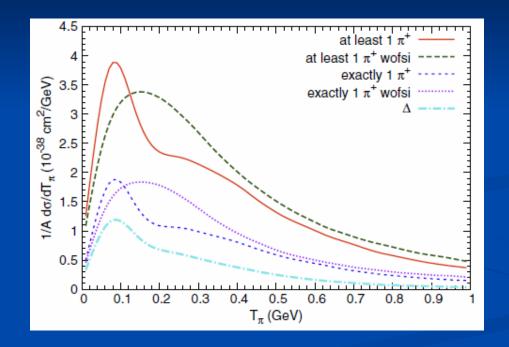
GIESSEN

Pion Production in T2K


Δ dominant only up to 0.8 GeV

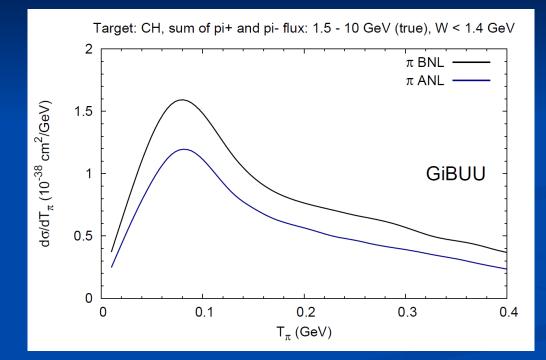

Measurement of π^+ production between about 0.5 and 0.8 GeV would be clean probe of Δ dynamics.

Pions at NOvA



Lalakulich et al, PR D86, 014607 (2012)

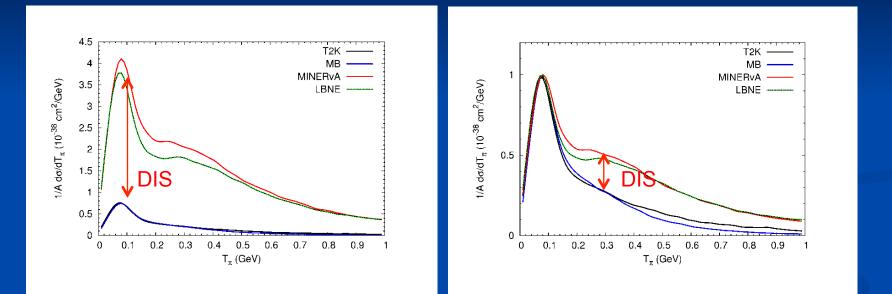
Pions at MINERvA



1.5 – 10 GeV no *W* cut

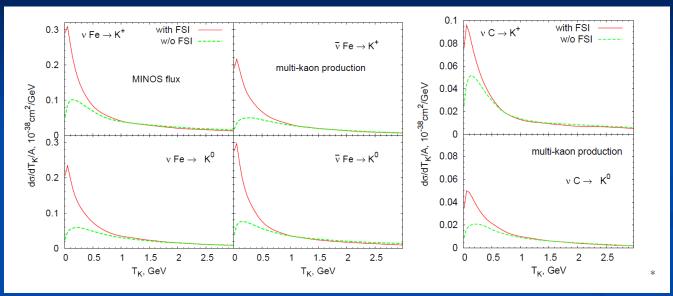
 Δ dominance because of fsi

Pions at MINERvA


Influence of elementary cross section

Cut on $W_{\pi N}$

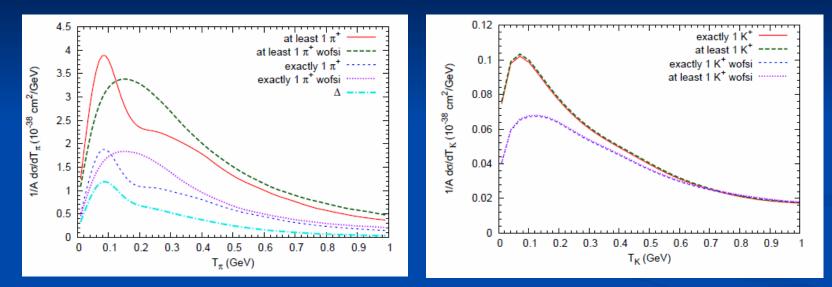
Pions at various experiments


Multi π^+ , target: C for MB, T2K and MINERvA, Ar for LBNE

Theoretische Physik

USTUS J IERIG UNIVERSITĂ GIESSEN

Kaons at MINOS and NOvA

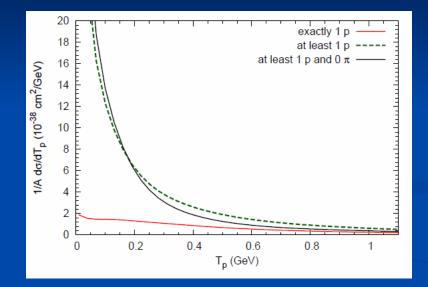

Lalakulich et al. PR D86, 014607 (2012)

FSI increase the cross section! Semi-inclusive X-sections much larger than exclusive ones (1 order of magnitude, cf. Athar, Alvarez-Ruso)

MINERvA

Fsi are most important, but different, for pions and kaons Elementary kaon vertices ,shielded' by secondary production: $\pi + N \rightarrow K + \Lambda$

NUINT 2014

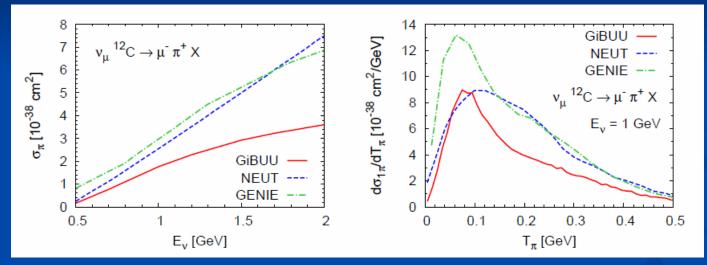


USTUS JIERIO

UNIVERSITÄ

GIESSEN

Nucleon Knock-out at MINERvA


Extremely strong fsi: fast initial proton becomes many low-energy nucleons

Summary

- Pions from resonance decay and DIS are large background contribution to QE
- Pions have to be well under control for QE studies; hindered by uncertainties in elementary X-sections
- Pions up to 800 MeV offer possibility to explore the axial coupling to the Delta
- Kaons are produced enhanced by fsi; makes it very different to isolate elementary kaon prod. X-sections

Comparison with other generators NUINT 2009

What causes all these significant differences??

