

Form Factors of the Delta Resonance Nulnt'14, Surrey, UK

Jakub Żmuda Krzysztof Graczyk, Jan Sobczyk

Institute of Theoretical Physics, University of Wrocław

May 22, 2014

Table of contents

Introduction

Theoretical framework

Main results

Vector form factors

Axial form factors

Introduction

Introduction

Motivation

 Δ(1232) resonance: important for Single Pion Production (SPP) in accelerator ν oscillation experiments. π⁰ → γγbackground to ν_e appearance etc.

- Vector part: rather well-known from pion photo- and electroproduction data.
- Axial part: neutrino experiments, nuclear targets:
 - Strong modifications of ∆ resonance properties in nuclear matter (*e.g.* E. Oset *et al.* 468, 631 (1987))
 - Nuclear FSI: π from oter channels, π absorption, charge exchange, distortion...
- Initial $N \to \Delta$ transition obscured.
- Mismatch between MiniBooNE and Minerva SPP? (talk by S. Manly, Hyupwoo Lee)

Motivation

- Limited data for deuteron. Very old ANL and BNL experiments
- Statistical analyses by K. M. Graczyk et al. Phys. Rev. D 80, 093001 (2009) (Δ resonance) and E. Hernandez et al. Phys. Rev. D 81, 085046 (2010) (nonresonant background) in the $\Delta^{++} \rightarrow p\pi^+$ channel.
- So far: no usage of neutron channel data.
- Tension between ANL and BNL data (resolved in K. M. Graczyk *et al.* Phys. Rev. D 80, 093001 (2009) for *pπ*⁺).
- Tension between theory and experiment,
 E. Hernandez *et al.*, Phys. Rev. D 76, 033005 (2007):

Introduction

Motivation

- Δ vector form factors: extraction from coincidence cross sections. Dependence on Δ and nonresonant background model.
- HNV: vector form factors from O. Lalakulich, E. Paschos and G. Piranishvili, Phys. Rev. D 74 014009 (2006) ← MAID pion electroproduction analysis (see e.g. D. Drechsel, S.S. Kamalov, L. Tiator Nucl. Phys. A645 (1999) 145-174).

Different Δ and background model \rightarrow different vector form factors

Consistency requirement: vector form factors fit.

Improvement of the picture by

Fit of the vector form factors?

2 Simultaneous fit to $p\pi^+$, $p\pi^0$ and $n\pi^+$ channels?

ANL experiment

- 12-ft ²H +¹ H bubble chamber at Argonne National Laboratory
- S. J. Barish *et. al.*, Phys. Rev. D19(1979) 2521, G. M. Radecky Phys. Rev. D25 (1982) 1161.
- $\langle E \rangle < 1 \text{ GeV}$
- $\delta_{flux} = 15\%$ (E < 1.5 GeV) and 25% (above)
- $\left\langle \frac{d\sigma}{dQ^2} \right\rangle_{ANL}$, $\nu_{\mu} + p \rightarrow \mu^- + p + \pi^+$ channel
- $\left\langle \frac{dN}{dQ^2} \right\rangle_{ANL}$, $\nu_{\mu} + n \rightarrow \mu^- + p + \pi^0$ and $\nu_{\mu} + n \rightarrow \mu^- + \pi^+ + n$.
- Experimental correction factors
- $\sigma(E)$ (normalizations).

- Kinematical cuts:
 - (1) 0.5 GeV < E < 6.0 GeV in $p\pi^+$ channel ("ANL1").
 - 2 0.5 GeV < E < 3.0 GeV in $p\pi^0$
 - "ANL2", $n\pi^+$ "ANL3" channels.
 - $\ \ \, {\small \bigcirc } \ \, 0.01 \ {\rm GeV}^2 < Q^2 < 1 {\rm GeV}^2.$

Oata with W < 1.4 GeV</p>

BNL experiment

- 7 foot ²H bubble chamber at Brookhaven National Laboratory.
- T. Kitagaki et al. Phys. Rev. D 34 (1986) 2554, T. Kitagaki et al., Phys. Rev. D42 (1990) 1331.
- $\langle E \rangle = 1.6 \text{ GeV}$
- $\delta_{flux} = 10\%$
- $\left\langle \frac{dN}{dQ^2} \right\rangle_{BNL}$ only $\nu_{\mu} + p \rightarrow \mu^- + p + \pi^+$ channel with W<1.4 GeV.
- Kinematical cuts:
 - 0.5 GeV< E < 6.0 GeV.
 (efficiency)0.1 GeV² < Q² < 3GeV².
- $\sigma(E)$ (normalization), no cut in W.

 Neutron channels: no W cut in Q² distributions. Distributions in W: Δ form factors almost W-independent. No use for them in this fit.

Theoretical framework

Theoretical framework

Low energy single pion production

- External weak/electromagnetic probe vertex: from Standard Model.
- Hadronic vertex: **strong** interactions. Low energies: interaction with hadrons. QCD \rightarrow chiral perturbation theory (χ PT).
- For T2K energy region: lowest order χ PT.
- Hernandez, Nieves, Valverde (HNV) model, Phys. Rev. D 76, 033005 (2007):

• Alltogether 7 currents: 2 from Δ resonance (a) and b)), rest from χPT

χ PT background

• Non-resonant χ PT amplitudes in HNV $\mathcal{J}^{\mu}_{hadr.} = \langle N'\pi | s^{\mu} | N \rangle$:

$$\begin{split} s^{\mu}_{NP} &= -iC_{NP}\frac{g_A}{\sqrt{2}f_{\pi}}\mathcal{K}\gamma^5 \frac{(\not\!\!\!/ + \not\!\!\!/ + M)}{(p+q)^2 - M^2 + i\epsilon} j^{\mu}_{CCN}(q)F_{\pi}(k-q) \\ s^{\mu}_{CNP} &= -iC_{CNP}\frac{g_A}{\sqrt{2}f_{\pi}} j^{\mu}_{CCN}(q) \frac{(\not\!\!/ - \not\!\!/ + M)}{(p-k)^2 - M^2 + i\epsilon}\mathcal{K}\gamma^5 F_{\pi}(k-q) \\ s^{\mu}_{CT} &= -iC_{CT}\frac{1}{\sqrt{2}f_{\pi}}\gamma^{\mu}F_{\pi}(k-q) \left[g_A F^V_{CT}(q^2)\gamma^5 - F_{\rho}((q-k)^2)\right] \\ s^{\mu}_{PIF} &= -iC_{PIF}\frac{g_A}{\sqrt{2}f_{\pi}}F^V_{PIF}(q^2) \frac{(2k-q)^{\mu}}{(k-q)^2 - m^2_{\pi}} 2M\gamma^5 F_{\pi}(k-q) \\ s^{\mu}_{PP} &= -iC_{PP}\frac{1}{\sqrt{2}f_{\pi}}F_{\rho}(k-q) \frac{q^{\mu}\not\!\!/ q}{q^2 - m^2_{\pi}} \end{split}$$

• Two fundamental constants pion decay $f_{\pi} \approx 92.4$ MeV and nucleon axial charge $g_A \approx 1.267$ (β -decay) plus nucleon electroweak form factors in the vertex j^{μ}_{CCN} . Rest: CVC $\rightarrow F^V_{PIF} = F^V_{CT} = F^V_1$ and ρ -meson dominance hypothesis.

Vector form factors Axial form factors

Main results

Main results

Vector form factors Axial form factors

Vector form factors

- Our framework: coherent sum of QFT currents. Fit of vector Δ form factors to inelastic proton structure function F^p₂:
 - Up to $W=M_p + 2m_{\pi}$ Osipenko et al. CLAS data sets (arXiv:hep-ex/0309052) spanning the region 0.225 up to 2.025 GeV² each 0.05 GeV².
 - Solution For invariant masses from $W=M_p + 2m_\pi$ up to 1.27 GeV- points generated with MAID2007 with Osipenko et al. errors.

Vector form factors Axial form factors

Vector form factors

• Our form factor model:

$$\begin{array}{lll} C_3^V(Q^2) & = & \displaystyle \frac{C_3^V(0) \cdot (1+K_1Q^2)}{1+AQ^2+BQ^4+CQ^6} \\ C_4^V(Q^2) & = & \displaystyle -\frac{M}{W} C_3^V(Q^2) \cdot \frac{(1+K_2Q^2)}{(1+K_1Q^2)} \\ C_5^V(Q^2) & = & \displaystyle \frac{C_5^V(0)}{\left(1+D\frac{Q^2}{M_V^2}\right)^2} \\ C_6^V(Q^2) & \equiv & 0 \; (CVC). \end{array}$$

- inspired by SU(6)-symmetrical quark model (J. Liu *et al.* Phys. Rev. C 52, 1630 (1995))- simple relation between $C_4^V(Q^2, W) = -\frac{M_p}{W}C_3^V(Q^2)$, $C_5^V = 0$.
- K₁, K₂ corrections to the above, analogous to the successful parametrization of proton e-m form factors from J. Kelly, Phys. Rev. C 70 (2004) 068202.
- Addition of non-zero C_5^V .

Vector form factors Axial form factors

Electromagnetic fit results

$C_{3}^{V}(0)$	A	В	C	K_1	K_2	$C_{5}^{V}(0)$	D
$2.1{\pm}0.1$	4.7 ± 0.7	-0.4±0.4	$5.6 {\pm} 1.4$	$0.1{\pm}0.2$	$1.7 {\pm} 0.4$	$0.6 {\pm} 0.05$	$1.0{\pm}0.1$

- Not perfect, but reasonable agreement with data.
- Comparable with MAID2007 up to the Δ peak.
- Q^2 -dependence of C_5^V : driven by vector mass $M_V = 0.84$ GeV • Best fit: $\frac{\chi^2_{W < M_p + 2m_{\pi}}}{D.O.F.} = 13.7$, MAID (unitarized, Δ +Born+ ρ + ω) $\frac{\chi^2_{W < M_p + 2m_{\pi}}}{D.O.F.} = 12.1$. Data too accurate

Electromagnetic fit results

- Comparison to J.S. O'Connell *et al.* Phys. Rev. Lett. 53, 1627 (1984) (top) and The Jefferson Lab Hall C E94-110 Collaboration: arXiv:nucl-ex/0410027v2 (bottom) inclusive electron-proton data.
- Bleue curve: HNV model with Lalakulich-Paschos form factors, red curve: best fit. Still not perfect, but visible improvement.

Vector form factors Axial form factors

Axial form factors

- Axial part: not so much available data. Nuclear targets: problem of many-body effectss, FSI etc. Best ANL/BNL: deuteron bubble chambers.
- Lack of strong theoretical constraints on C^A_i. Leading form-factor in dipole ansatz:

$$C_5^A(Q^2) = rac{C_5^A(0)}{(1+Q^2/M_A^2)^2}$$

- Off-diagonal Goldberger-Treiman relation $C_5^A(0) = \frac{f^*}{\sqrt{2}} \approx 1.2$. Delta axial massonly from fits. Intuition- "axial charge radius" $M_A = \mathcal{O}(1 \text{ GeV})$. In general, both can be fitted.
- From PCAC:

$$C_6^A(Q^2) = \frac{M^2 C_5^A(Q^2)}{m_\pi^2 + Q^2}$$

• The rest: no real constraint, "Adler model", "handwaving":

$$C_3^A(Q^2) = 0; \ C_4^A(Q^2) = -\frac{1}{4}C_5^A(Q^2)$$

Deuteron model

 Effective deuteron model (e.g. L.Alvarez-Ruso *et al.* Phys. Rev. C 59 (1999) 3386):

$$\frac{d\sigma}{dQ^2}^{deuteron} = \int \frac{d^3 p_N}{(2\pi)^3} \frac{f(|\vec{p}_N|)}{v_{rel.}} \frac{d\sigma(\tilde{q}^{\mu},\vec{p}_N)}{dQ^2}^{free}$$

with $f(p_N)$ - norm of momentum-space deuteron wave function ("Paris": M. Lacombe *et al.* Phys. Lett. B 101 (1981) 139), $\tilde{q}^{\mu} = (q^0 - B(|\vec{p}_n|), \vec{q}),$ $B(|\vec{p}_N|) = M_D - 2\sqrt{\vec{p}_N^2} + M^2 \text{ and } v_{rel.} \rightarrow \text{flux correction due to nucleon movement.}$

 Full △+background computation: complicated numerical procedure. Usage of Wroclaw Centre for Networking and Supercomputing grid.

Preliminary results for ANL data

- Top plot: full model, free nucleon target best fit result for ANL data+ 1-σ contours:
- Separate fits in ANL1 and ANL2 channels: consistent, ANL3: higher C^A₅(0)
- Prefference of C^A₅(0) ≈0.95, smaller from Goldbgerger-Treiman (1-2σ). M_A ≈0.8 GeV (all channels).
- Bottom plot: deuteron effects included C^A₅(0) ≈1.1, M_A ≈0.85 GeV statistical consistency with Goldberger-Treiman.
- Deuteron effects \rightarrow higher C_5^A .
- Global $\frac{\chi^2_{ANL}}{D.O.F.} = \frac{63.37}{35}$ (free target) $\rightarrow \frac{61.90}{35}$ (deuteron).

Comparison of total cross sections

- Cross sections with W < 1.4 GeV cut.
- Good in ANL $p\pi^+$ and $p\pi^0$ channels.
- Visible lack of cross section in nπ⁺ channel. Expected from the separate C₅^A(0) fits.
- Same old problem with $n\pi^+$.

ANL Q^2 distributions

Vector form factors Axial form factors

Inclusion of BNL

- BNL and ANL1 fits within 1σ.
- Inclusion of BNL data in global fit $M_A=0.85 \text{ GeV} \rightarrow 0.95 \text{ GeV}.$
- Problem: only $p\pi^+$ channel from BNL, $p\pi^+$ "double counting" \rightarrow Restriction to ANL data.
- Need for more deuterium experments.

Conclusions

- First fit of single pion production model to electromagnetic and weak data including all ANL channels has been performed.
- Tests of fitted model against inclusive electron data give reasonable, albeit not perfect agreement.
- For neutrino SPP each channel $p\pi^+$, $p\pi^0$ and $n\pi^+$ seems to fit nicely separately, but there is some tension between $n\pi^+$ channel and the rest (much higher $C_5^4(0)$). This tension is of the order of 2σ level.
- Inclusion of χPT did not resolve the ANL3 channel $(n\pi^+)$ problem.
- ANL fit: $C_5^A(0)$ in good agreement with Goldberger-Treiman relation.

Acknowledgements

- Most of numerical calculations were carried out in the Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), grant No. 268
- We would like to thank Luis Alvarez-Ruso and Juan Nieves for many fruitful discussions.

Backup

Statistical framework

• All fits so far: only $p\pi^+$ (ANL1) channel, flux-averaged $\frac{d\sigma}{dQ^2}$ with errors $\delta \frac{d\sigma}{dQ^2}$ (actually: Q^2 -bin-averaged). Comparison of flux- and Q^2 - averaged cross sections in each bin together with data normalization fit p_{ANL} (statistical model from Phys. Rev. D 80, 093001 (2009)).

$$\chi^2_{ANL1} = \sum_{i}^{(Q^2 bins)} \left(\frac{\sigma_i^{TH\cdot} - p_{ANL} \cdot \sigma_i^{EXP\cdot}}{p_{ANL} \cdot \delta \sigma_i^{EXP\cdot}} \right)^2 + \left(\frac{p_{ANL} - 1}{\delta p_{ANL}} \right)^2$$

Statistical framework

- ANL2 and ANL3: event distributions in Q^2 (distribution shapes).
- Experimental correction factors C^{EXP} with errors δC^{EXP} . Normalization p_{ANL} .

$$\begin{split} \chi^2_{ANL2,3} &= \sum_{i}^{(Q^2 bins)} \frac{\left(\sigma_i^{TH.} \cdot \frac{\sum_j N_j^{EXP.} \cdot C^{EXP}}{\sum_j \sigma_j^{TH.}} \cdot p_{ANL} - N_i^{EXP.}\right)^2}{N_i^{EXP.} \cdot C^{EXP.} (1 + \delta C^{EXP.})} + \\ &+ \left(\frac{\frac{\sigma_{TOT.}^{TH.}}{\sigma_{TOT.}^{EXP.} \cdot P_{ANL}} - 1}{\delta p_{ANL}}\right)^2 \end{split}$$

• First fit to all three channels.

Statistical framework

• $\left\langle \frac{dN}{dQ^2} \right\rangle_{BNL}$ + normalization p_{BNL} . Problem: no cut in W for σ_{TOT}^{EXP} . $\delta p_{BNL} = 10\%$ - beam flux uncertainty from K. Graczyk *et al.* PRD 80, 093001 (2009).

$$\begin{split} \chi^2_{BNL} &= \sum_{i}^{(Q^2 bins)} \frac{\left(\sigma_i^{TH.} \cdot \frac{\sum_j N_j^{EXP.}}{\sum_j \sigma_j^{TH.}} \cdot p_{BNL} - N_i^{EXP.}\right)^2}{N_i^{EXP.}} + \\ &+ \left(\frac{\frac{\sigma_{TOT.}^{TH.}}{\sigma_{TOT.}^{EXP.}} - 1}{\delta p_{BNL}}\right)^2 \end{split}$$

Preliminary results table

Data	bckgr.	deut.	$C_{5}^{A}(0)$	M_A	p_{ANL}	p_{BNL}	$\chi^2/D.O.F.$
ANL1	0	0	$1.1{\pm}0.3$	0.95 ± 0.2	1.04	-	0.71/8
ANL1	1	0	$0.95{\pm}0.3$	$0.95{\pm}0.3$	1.05	-	0.95/8
ANL1	1	1	$1.1{\pm}0.3$	$1.0{\pm}0.2$	1.06	-	1.28/8
ANL2	0	0	$1.45{\pm}0.5$	$0.95{\pm}0.2$	0.93	-	14.6/13
ANL2	1	0	$1.1{\pm}0.7$	$0.95{\pm}0.3$	0.93	-	14.0/13
ANL2	1	1	$1.3{\pm}0.7$	$1.0{\pm}0.3$	0.93	-	13.7/13
ANL3	0	0	$2.7{\pm}0.7$	$0.75 {\pm} 0.1$	0.93	-	14.0/12
ANL3	1	0	$2.5{\pm}0.5$	$0.75 {\pm} 0.15$	0.94	-	14.0/12
ANL3	1	1	$2.85{\pm}0.6$	$0.75 {\pm} 0.15$	0.94	-	13.3/12
ANL	0	0	$1.15{\pm}0.1$	$0.8{\pm}0.1$	0.91	-	57.9/35
ANL	1	0	$0.95{\pm}0.15$	$0.8{\pm}0.1$	0.89	-	63.4/35
ANL	1	1	$1.1{\pm}0.2$	$0.85 {\pm} 0.2$	0.90	-	61.9/35
BNL	1	0	$1.1{\pm}0.2$	$0.95{\pm}0.1$	-	0.98	24.2/29
BNL	1	1	$1.3 {\pm} 0.25$	$1.1{\pm}0.1$	-	0.97	34.2/29
ANL+BNL	1	0	$0.9{\pm}0.2$	$0.9{\pm}0.1$	0.92	0.97	93.8/65
ANL+BNL	1	1	$1.05 {\pm} 0.2$	$0.95{\pm}0.1$	0.95	0.95	114/65

