Form Factors of the Delta Resonance

NuInt’14, Surrey, UK

Jakub Żmuda
Krzysztof Graczyk, Jan Sobczyk

Institute of Theoretical Physics, University of Wrocław

May 22, 2014
Table of contents

1. Introduction

2. Theoretical framework

3. Main results
 - Vector form factors
 - Axial form factors

4. Conclusions
Introduction
Motivation

- $\Delta(1232)$ resonance: important for Single Pion Production (SPP) in accelerator ν oscillation experiments. $\pi^0 \rightarrow \gamma\gamma$-background to ν_e appearance etc.

Vector part: rather well-known from pion photo- and electroproduction data.

Axial part: neutrino experiments, nuclear targets:

1. Strong modifications of Δ resonance properties in nuclear matter (e.g. E. Oset et al. 468, 631 (1987))
2. Nuclear FSI: π from other channels, π absorption, charge exchange, distortion...

- Initial $N \rightarrow \Delta$ transition obscured.
- Mismatch between MiniBooNE and Minerva SPP? (talk by S. Manly, Hyupwoo Lee)
Motivation

- Limited data for deuteron. Very old ANL and BNL experiments.
- So far: no usage of neutron channel data.
Motivation

- Δ vector form factors: extraction from coincidence cross sections. Dependence on Δ and nonresonant background model.

- MAID≠HNV.

Different Δ and background model → different vector form factors

Consistency requirement: vector form factors fit.

- Improvement of the picture by
 1. Fit of the vector form factors?
 2. Simultaneous fit to $p\pi^+$, $p\pi^0$ and $n\pi^+$ channels?
12-ft $^2H + ^1H$ bubble chamber at Argonne National Laboratory

$\langle E \rangle < 1$ GeV

$\delta_{flux} = 15\% (E < 1.5$ GeV$)$ and 25% (above)

$\langle \frac{d\sigma}{dQ^2} \rangle_{ANL}, \nu_\mu + p \rightarrow \mu^- + p + \pi^+$ channel

$\langle \frac{dN}{dQ^2} \rangle_{ANL}, \nu_\mu + n \rightarrow \mu^- + p + \pi^0$ and $\nu_\mu + n \rightarrow \mu^- + \pi^+ + n$.

Experimental correction factors

$\sigma(E)$ (normalizations).

Kinematical cuts:

1. 0.5 GeV$< E < 6.0$ GeV in $p\pi^+$ channel ("ANL1").
2. 0.5 GeV$< E < 3.0$ GeV in $p\pi^0$ "ANL2", $n\pi^+$ "ANL3" channels.
3. 0.01 GeV$^2 < Q^2 < 1$ GeV2.
4. Data with $W < 1.4$ GeV
BNL experiment

- 7 foot $^2 H$ bubble chamber at Brookhaven National Laboratory.

- $\langle E \rangle = 1.6$ GeV

- $\delta_{\text{flux}} = 10\%$

- $\left\langle \frac{dN}{dQ^2} \right\rangle_{BNL}$ only $\nu\mu + p \rightarrow \mu^- + p + \pi^+$ channel with $W<1.4$ GeV.

- Kinematical cuts:

 1. $0.5 \text{ GeV} < E < 6.0 \text{ GeV}$.
 2. (efficiency) $0.1 \text{ GeV}^2 < Q^2 < 3\text{ GeV}^2$.

- $\sigma(E)$ (normalization), no cut in W.

- Neutron channels: no W cut in Q^2 distributions. Distributions in W: Δ form factors almost W-independent. No use for them in this fit.
Theoretical framework
Low energy single pion production

- External weak/electromagnetic probe vertex: from Standard Model.
- Hadronic vertex: **strong** interactions. Low energies: interaction with hadrons. QCD \rightarrow chiral perturbation theory (χPT).
- For T2K energy region: lowest order χPT.

Alltogether 7 currents: 2 from Δ resonance (a and b), rest from χPT.
Non-resonant χPT amplitudes in HNV $\mathcal{J}_{\text{hadr.}}^\mu = \langle N'\pi | s^\mu | N \rangle$:

\[
\begin{align*}
 s^\mu_{NP} &= -iC_{NP} \frac{g_A}{\sqrt{2f_\pi}} k \gamma^5 (\not{p} + \not{q} + M) \left(\frac{1}{p^2 - M^2 + i\epsilon} j^\mu_{CCN} (q) F_\pi (k - q) \right) \\
 s^\mu_{CNP} &= -iC_{CNP} \frac{g_A}{\sqrt{2f_\pi}} j^\mu_{CCN} (q) \left(\frac{1}{p^2 - M^2 + i\epsilon} k \gamma^5 F_\pi (k - q) \right) \\
 s^\mu_{CT} &= -iC_{CT} \frac{1}{\sqrt{2f_\pi}} \gamma^\mu F_\pi (k - q) \left[g_A F^V_{CT} (q^2) \gamma^5 - F_\rho ((q - k)^2) \right] \\
 s^\mu_{PIF} &= -iC_{PIF} \frac{g_A}{\sqrt{2f_\pi}} F^V_{PIF} (q^2) \left(\frac{2k - q)^\mu}{k^2 - m^2_\pi} 2M \gamma^5 F_\pi (k - q) \right) \\
 s^\mu_{PP} &= -iC_{PP} \frac{1}{\sqrt{2f_\pi}} F_\rho (k - q) \frac{q^\mu \not{q}}{q^2 - m^2_\pi} \]
\]

Two fundamental constants: pion decay $f_\pi \approx 92.4$ MeV and nucleon axial charge $g_A \approx 1.267$ (β-decay) plus nucleon electroweak form factors in the vertex j^μ_{CCN}. Rest: CVC $\rightarrow F^V_{PIF} = F^V_{CT} = F^V_1$ and ρ-meson dominance hypothesis.
Main results
Our framework: coherent sum of QFT currents. Fit of vector Δ form factors to inelastic proton structure function F_2^p:

1. Up to $W = M_p + 2m_\pi$ Osipenko et al. CLAS data sets (arXiv:hep-ex/0309052) spanning the region 0.225 up to 2.025 GeV2 each 0.05 GeV2.

2. For invariant masses from $W = M_p + 2m_\pi$ up to 1.27 GeV- points generated with MAID2007 with Osipenko et al. errors.
Vector form factors

- Our form factor model:

\[
C_3^V (Q^2) = \frac{C_3^V (0) \cdot (1 + K_1 Q^2)}{1 + A Q^2 + B Q^4 + C Q^6}
\]

\[
C_4^V (Q^2) = -\frac{M}{W} C_3^V (Q^2) \cdot \frac{(1 + K_2 Q^2)}{(1 + K_1 Q^2)}
\]

\[
C_5^V (Q^2) = \frac{C_5^V (0)}{(1 + D \frac{Q^2}{M_V^2})^2}
\]

\[
C_6^V (Q^2) \equiv 0 \ (CVC).
\]

- inspired by SU(6)-symmetrical quark model (J. Liu et al. Phys. Rev. C 52, 1630 (1995))- simple relation between \(C_4^V (Q^2, W) = -\frac{M_p}{W} C_3^V (Q^2) \), \(C_5^V = 0 \).

- \(K_1, K_2 \) corrections to the above, analogous to the successful parametrization of proton e-m form factors from J. Kelly, Phys. Rev. C 70 (2004) 068202.

- Addition of non-zero \(C_5^V \).
Electromagnetic fit results

<table>
<thead>
<tr>
<th>$C_3^V(0)$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>K_1</th>
<th>K_2</th>
<th>$C_5^V(0)$</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1±0.1</td>
<td>4.7±0.7</td>
<td>-0.4±0.4</td>
<td>5.6±1.4</td>
<td>0.1±0.2</td>
<td>1.7±0.4</td>
<td>0.6±0.05</td>
<td>1.0±0.1</td>
</tr>
</tbody>
</table>

- Not perfect, but reasonable agreement with data.
- Comparable with MAID2007 up to the Δ peak.
- Q^2-dependence of C_5^V: driven by vector mass $M_V = 0.84$ GeV
- Best fit: $\frac{\chi^2_{W < M_p + 2m_\pi}}{D.O.F.} = 13.7$, MAID (unitarized, Δ+Born+ρ+ω)
- $\frac{\chi^2_{W < M_p + 2m_\pi}}{D.O.F.} = 12.1$. Data too accurate.
Electromagnetic fit results

- Blue curve: HNV model with Lalakulich-Paschos form factors, red curve: best fit. Still not perfect, but visible improvement.
Axial form factors

- **Axial part:** not so much available data. Nuclear targets: problem of many-body effects, FSI etc. Best ANL/BNL: deuteron bubble chambers.

- Lack of strong theoretical constraints on C_i^A. Leading form-factor in dipole ansatz:

 $$C_5^A(Q^2) = \frac{C_5^A(0)}{(1 + Q^2/M_A^2)^2}$$

- Off-diagonal Goldberger-Treiman relation $C_5^A(0) = \frac{f^*}{\sqrt{2}} \approx 1.2$. Delta axial mass-only from fits. Intuition- "axial charge radius" $M_A = \mathcal{O}(1 \text{ GeV})$. In general, both can be fitted.

- From PCAC:

 $$C_6^A(Q^2) = \frac{M^2C_5^A(Q^2)}{m_\pi^2 + Q^2}$$

- The rest: no real constraint, "Adler model", "handwaving":

 $$C_3^A(Q^2) = 0; \ C_4^A(Q^2) = -\frac{1}{4}C_5^A(Q^2)$$
Effective deuteron model (e.g. L. Alvarez-Ruso et al. Phys. Rev. C 59 (1999) 3386):

\[
\frac{d\sigma}{dQ^2} \text{ deuteron} = \int \frac{d^3p_N}{(2\pi)^3} \frac{f(|\vec{p}_N|)}{v_{rel.}} \frac{d\sigma(\vec{q}^\mu, \vec{p}_N)}{dQ^2} \text{ free}
\]

with \(f(p_N) \)- norm of momentum-space deuteron wave function ("Paris": M. Lacombe et al. Phys. Lett. B 101 (1981) 139), \(\vec{q}^\mu = (q^0 - B(|\vec{p}_N|), \vec{q}) \),

\[
B(|\vec{p}_N|) = M_D - 2\sqrt{\vec{p}_N^2 + M^2}
\]

and \(v_{rel.} \rightarrow \) flux correction due to nucleon movement.

Full \(\Delta + \) background computation: complicated numerical procedure. Usage of Wroclaw Centre for Networking and Supercomputing grid.
Preliminary results for ANL data

- **Top plot**: full model, free nucleon target
 best fit result for ANL data+ 1-σ
 contours:

- **Separate fits in ANL1 and ANL2**
 channels: consistent, ANL3: higher $C_5^A(0)$

- Preference of $C_5^A(0) \approx 0.95$, smaller from
 Goldberger-Treiman (1-2σ). $M_A \approx 0.8$
 GeV (all channels).

- **Bottom plot**: deuteron effects included
 $C_5^A(0) \approx 1.1$, $M_A \approx 0.85$ GeV
 statistical consistency with Goldberger-Treiman.

- Deuteron effects → higher C_5^A.

- **Global** $\chi^2_{ANL} / D.O.F. = \frac{63.37}{35}$ (free
 target) → $\frac{61.90}{35}$ (deuteron).
Comparison of total cross sections

- Cross sections with $W < 1.4$ GeV cut.
- Good in ANL $p\pi^+$ and $p\pi^0$ channels.
- Visible lack of cross section in $n\pi^+$ channel. Expected from the separate $C_5^A(0)$ fits.
- Same old problem with $n\pi^+$.

ANL Q^2 distributions

Again, biggest discrepancy in the $n\pi^+$ channel.
Inclusion of BNL

- BNL and ANL1 fits within 1σ.
- Inclusion of BNL data in global fit $M_A=0.85$ GeV \rightarrow 0.95 GeV.
- Problem: only $p\pi^+$ channel from BNL, $p\pi^+$ "double counting" \rightarrow Restriction to ANL data.
- Need for more deuterium experiments.
Conclusions

- First fit of single pion production model to electromagnetic and weak data including all ANL channels has been performed.
- Tests of fitted model against inclusive electron data give reasonable, albeit not perfect agreement.
- For neutrino SPP each channel $p\pi^+$, $p\pi^0$ and $n\pi^+$ seems to fit nicely separately, but there is some tension between $n\pi^+$ channel and the rest (much higher $C_5^A(0)$). This tension is of the order of 2σ level.
- Inclusion of χPT did not resolve the ANL3 channel ($n\pi^+$) problem.
- ANL fit: $C_5^A(0)$ in good agreement with Goldberger-Treiman relation.
Most of numerical calculations were carried out in the Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), grant No. 268. We would like to thank Luis Alvarez-Ruso and Juan Nieves for many fruitful discussions.
Backup
All fits so far: only $p\pi^+$ (ANL1) channel, flux-averaged $\frac{d\sigma}{dQ^2}$ with errors $\delta \frac{d\sigma}{dQ^2}$ (actually: Q^2-bin-averaged). Comparison of flux- and Q^2-averaged cross sections in each bin together with data normalization fit p_{ANL} (statistical model from Phys. Rev. D 80, 093001 (2009)).

$$\chi^2_{ANL1} = \sum_i^{(Q^2 \text{bins})} \left(\frac{\sigma_i^{TH.} - p_{ANL} \cdot \sigma_i^{EXP.}}{p_{ANL} \cdot \delta\sigma_i^{EXP.}} \right)^2 + \left(\frac{p_{ANL} - 1}{\delta p_{ANL}} \right)^2$$
Statistical framework

- **ANL2** and **ANL3**: event distributions in Q^2 (distribution shapes).
- Experimental correction factors C^{EXP} with errors δC^{EXP}. Normalization p_{ANL}.

$$
\chi^2_{ANL2,3} = \sum_i \left(\sigma_{TH.} \cdot \frac{\sum_j N_j^{EXP} \cdot C^{EXP}}{\sum_j \sigma_j^{TH.}} \cdot p_{ANL} - N_i^{EXP.} \right)^2 + \left(\frac{\sigma_{TH.}}{\sigma_{TOT.} \cdot p_{ANL}} - 1 \right)^2
$$

- First fit to all three channels.
Statistical framework

\[
\left\langle \frac{dN}{dQ^2} \right\rangle_{BNL} + \text{normalization } p_{BNL}. \text{ Problem: no cut in } W \text{ for } \sigma_{TOT}^{EXP}.
\]

\[\delta p_{BNL} = 10\% - \text{beam flux uncertainty from K. Graczyk et al. PRD 80, 093001 (2009).}\]

\[
\chi^2_{BNL} = \sum_i \left(\frac{\left(\frac{\sigma_{i}^{TH} \cdot \sum_j N_{j}^{EXP.}}{\sum_j \sigma_{j}^{TH}} \cdot \delta p_{BNL} - N_{i}^{EXP.}} \right)^2}{\sum_{j} \sigma_{j}^{TH}} \right) + \left(\frac{\sigma_{TOT}^{EXP.} \cdot \delta p_{BNL} - 1}{\delta p_{BNL}} \right)^2
\]
Preliminary results table

<table>
<thead>
<tr>
<th>Data</th>
<th>bckgr.</th>
<th>deut.</th>
<th>$C_5^A(0)$</th>
<th>M_A</th>
<th>p_{ANL}</th>
<th>p_{BNL}</th>
<th>$\chi^2/D.O.F.$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANL1</td>
<td>0</td>
<td>0</td>
<td>1.1±0.3</td>
<td>0.95±0.2</td>
<td>1.04</td>
<td>-</td>
<td>0.71/8</td>
</tr>
<tr>
<td>ANL1</td>
<td>1</td>
<td>0</td>
<td>0.95±0.3</td>
<td>0.95±0.3</td>
<td>1.05</td>
<td>-</td>
<td>0.95/8</td>
</tr>
<tr>
<td>ANL1</td>
<td>1</td>
<td>1</td>
<td>1.1±0.3</td>
<td>1.0±0.2</td>
<td>1.06</td>
<td>-</td>
<td>1.28/8</td>
</tr>
<tr>
<td>ANL2</td>
<td>0</td>
<td>0</td>
<td>1.45±0.5</td>
<td>0.95±0.2</td>
<td>0.93</td>
<td>-</td>
<td>14.6/13</td>
</tr>
<tr>
<td>ANL2</td>
<td>1</td>
<td>0</td>
<td>1.1±0.7</td>
<td>0.95±0.3</td>
<td>0.93</td>
<td>-</td>
<td>14.0/13</td>
</tr>
<tr>
<td>ANL2</td>
<td>1</td>
<td>1</td>
<td>1.3±0.7</td>
<td>1.0±0.3</td>
<td>0.93</td>
<td>-</td>
<td>13.7/13</td>
</tr>
<tr>
<td>ANL3</td>
<td>0</td>
<td>0</td>
<td>2.7±0.7</td>
<td>0.75±0.1</td>
<td>0.93</td>
<td>-</td>
<td>14.0/12</td>
</tr>
<tr>
<td>ANL3</td>
<td>1</td>
<td>0</td>
<td>2.5±0.5</td>
<td>0.75±0.15</td>
<td>0.94</td>
<td>-</td>
<td>14.0/12</td>
</tr>
<tr>
<td>ANL3</td>
<td>1</td>
<td>1</td>
<td>2.85±0.6</td>
<td>0.75±0.15</td>
<td>0.94</td>
<td>-</td>
<td>13.3/12</td>
</tr>
<tr>
<td>ANL</td>
<td>0</td>
<td>0</td>
<td>1.15±0.1</td>
<td>0.8±0.1</td>
<td>0.91</td>
<td>-</td>
<td>57.9/35</td>
</tr>
<tr>
<td>ANL</td>
<td>1</td>
<td>0</td>
<td>0.95±0.15</td>
<td>0.8±0.1</td>
<td>0.89</td>
<td>-</td>
<td>63.4/35</td>
</tr>
<tr>
<td>ANL</td>
<td>1</td>
<td>1</td>
<td>1.1±0.2</td>
<td>0.85±0.2</td>
<td>0.90</td>
<td>-</td>
<td>61.9/35</td>
</tr>
<tr>
<td>BNL</td>
<td>1</td>
<td>0</td>
<td>1.1±0.2</td>
<td>0.95±0.1</td>
<td>-</td>
<td>0.98</td>
<td>24.2/29</td>
</tr>
<tr>
<td>BNL</td>
<td>1</td>
<td>1</td>
<td>1.3±0.25</td>
<td>1.1±0.1</td>
<td>-</td>
<td>0.97</td>
<td>34.2/29</td>
</tr>
<tr>
<td>ANL+BNL</td>
<td>1</td>
<td>0</td>
<td>0.9±0.2</td>
<td>0.9±0.1</td>
<td>0.92</td>
<td>0.97</td>
<td>93.8/65</td>
</tr>
<tr>
<td>ANL+BNL</td>
<td>1</td>
<td>1</td>
<td>1.05±0.2</td>
<td>0.95±0.1</td>
<td>0.95</td>
<td>0.95</td>
<td>114/65</td>
</tr>
</tbody>
</table>