Single pion production in NEUT

Yoshinari Hayato
(Kamioka, ICRR, UTokyo)

Single pi production updates
by P. Rodriguez and A. Bercellie

Pion interactions in nucleus updates
by P. de Perio and R. Tacik
Single pion production via resonance in NEUT

Use the model by Rein and Sehgal

- Code to calculate the helicity amplitude
 Provided by the authors

- Calculation of the cross-section \(\frac{d\sigma}{dq^2dW} \)
 Follow the formula in the publications

 Add helicity amplitudes as proposed in the original article
 to take into account the interference of the resonances

- Lepton mass corrections by the same authors
 have been included

- Two form factors are implemented
 Original form factor by Rein & Sehgal
 \(M_A = 1.21 \text{ GeV}/c^2 \) was chosen
 Revised form factor by K.M. Graczyk and J.T. Sobczyk
 (explained later)
Single pion production via resonance in NEUT

Known issue in the Rein-Sehgal model

electro-pion production cross-section can not reproduce data if we use the vector part

Interestingly, results for neutrino agrees pretty well. (Including axial current component makes the cross-section similar.)
Single pion production via resonance in NEUT

Attempts to improve the vector form factor in Rein-Sehgal model

Prescription by K.M. Graczyk and J.T. Sobczyk
Single pion production via resonance in NEUT

Parametrization

Parameters were fit with the bubble chamber data (ANL & BNL)

- Best fit: $M_A^{\text{res}} = 0.95$, $C_5^A(0) = 1.01$
- non-resonant background scale factor = 1.3

- Parameters in nucleon model:

 $C_5^A(0)$ Value of axial FF at $Q^2 = 0$. Main effect is normalization of total xsec

 M_A^{res} Mass parameter in axial FF. Affects both shape of $d\sigma/dQ^2$ and overall normalization.

 BG Scale of $J = 1/2$ nonresonant background terms

- Try to reparametrize (M_A^{res}, $C_5^A(0)$) into (shape, norm) for convenience
Single pion production via resonance in NEUT

$$\nu p \rightarrow \mu^- p \pi^+$$

Cross-section comparison (new vs old)
Single pion production via resonance in NEUT

For the interaction in nucleus, initial interactions are modified

- Pauli-blocking effect is taken into account
 Momentum of nucleon after the decay of delta has to be larger than the Fermi surface momentum.
 (2 ~ 3% of the interactions are prohibited.)

- Pion-less delta decay has been implemented
 20% of the delta are assumed to be absorbed.

\[\nu N \rightarrow l \Delta \]
\[\Delta N N \rightarrow N N \]

~ no pion is produced but lepton and nucleon are ejected for the interaction in nucleus.

*) Recently, meson exchange current interaction was independently added
 and this feature has been turned off by default in the latest release.
Single pion production via resonance in NEUT

Pion interactions in nucleus, which change the observables.

• Simulated with the cascade model
• Simulated interactions
 inelastic scattering
 incl. charge exchange & particle production (\(\pi N \rightarrow \pi \pi N \))
 absorption
• Interaction probability \(\sim \) Mean free paths
 \(P_\pi < 500 \text{ MeV/c} \)
 Density dependent mean free path
 Originally from E. Oset et. al. model
 Scaled by fitting the \(\pi A \) scattering data
 \(P_\pi > 500 \text{ MeV/c} \)
 Density independent mean free path
 \(\pi \)-N scattering data + \(\pi A \) scattering data
• Kinematics determination
 \(\pi N \) phase shift analysis with medium correction (R. Seki et al.)
Single pion production via resonance in NEUT

\(\pi \) Carbon scattering interaction cross-sections

\[\pi^+ \text{ Initial Momentum} \ (\text{MeV/c}) \]

\[\pi^- \text{ Initial Momentum} \ (\text{MeV/c}) \]

\(\pi^+ \) Oxygen scattering differential cross-sections

\[\frac{d\sigma}{d\Omega} \ (\text{mb/sr}) \]

\[\theta_{\text{lab}} \]
Single pion production via resonance in NEUT

Comparisons with data from MiniBooNE

CC $1\pi^+$ $d\sigma/dq^2$

CC $1\pi^0$ $d\sigma/dq^2$

NC $1\pi^0$ $d\sigma/dp^*$

(a) MiniBooNE CC1π^+

(b) MiniBooNE CC1π^0

(c) MiniBooNE NC1π^0
Single pion production via resonance in NEUT

Comparisons with data from K2K and SciBooNE

K2K NC $1\pi^0 p_\pi$

SciBooNE NC $1\pi^0 p_\pi$

SciBooNE NC $1\pi^0 \theta_\pi$
Single pion production via resonance in NEUT

Data points are from the results presented by B. Eberly titled “Probing Nuclear Physics with Neutrino Pion Production at MINERvA” (Joint Experimental-Theoretical Seminar at Fermilab, Feb. 7 2014)
Single pion production via resonance in NEUT

Nucleon emission after π absorption

- # of nucleon emitted after π absorption
 - Based on the experimental data\(^1\)

- Momentum of nucleons for 2 body decay
 - measurements\(^2\)

Other cases
 - Isotropically