Constraining the NuMI Flux

Deborah Harris Fermilab NuINT 2014 May 22, 2014 With thanks to: Bob Zwaska, Jeff Nelson, Anne Norrick, Leo Aliaga, Mike Kordosky

Outline

- Introduction to NuMI Beamline
- From Indirect to Direct Constraints
 - Monte Carlo Predictions
 - Hadron Production Constraints
 - In Situ Muon Flux Constraints
 - Neutrino Flux Measurements
 - Neutrino-electron Scattering
 - "Low-Nu" technique
 - Alternate Beam Configuration Data
- Scorecard

22 May 2014

The best way to constrain?

Simplifying the problem...

- Protons strike target, make pions and kaons
 - Need to understand hadron production for 120GeV protons on 2 interaction lengths of graphite
- Pions and kaons focused by magnetic horn
 - Need to understand and simulate focusing elements
- Pions and kaons decay in beamline
 - Those pions and kaons often reinteract in the beamline, need to understand tertiary production (production on Al, etc.)

Fluxes in NuMI Beamline

22 May 2014

Near Flux, Far Flux

- Two-detector experiment mantra: " Φ and σ uncertainties cancel..."
- Far and Near Fluxes are not identical, even without oscillations

MONTE-CARLO ONLY CONSTRAINTS OF FLUX

Hadron Production Simulations

- GEANT-4 Based Model
 - Used by MINERvA
 - Different hadron production models inside GEANT:
 - FTFP, QGSP, BERTini models
- FLUKA
 - Used by MINOS and MINOS+
 - FLUKA08, transitioning to FLUKA11 [www.fluka.org]
 - Geometry defined through GEANT framework
- Different Hadron Production & Cascade Models provide early estimates for flux uncertainties

Flux Uncertainties from Beam Focusing

- Different uncertainties in beamline geometry and parameters produce different possible changes in expected spectrum
- Focusing errors tend to be on high side of focusing peak
- Overall level also uncertain: proton counting not trivial

Ref: Z. Pavlovich, PhD thesis, UT Austin 2008

HADRON PRODUCTION DATA

Incorporating Hadron Production Data

Datasets Used by MINERvA:

• NA49 pC @ 158 GeV

- Cascade leading to v is tabulated at generation. Save kinematics & material
- In analysis, interactions reweighted as σ(data)/σ (MC)
 - Includes correction for beam attenuation in the target.
- π[±] production for xF < 0.5 [*Eur.Phys.J.* C49 (2007) 897]
- K[±] production for xF < 0.2 [G. Tinti Ph.D. thesis]
- π production for xF<0.9 [*Eur.Phys.J.* C73 (2013) 2364]
- MIPP pC @120 GeV [A. Lebedev Ph.D. thesis]
 - K/ π ratio + NA49 extends kaon coverage to xF<0.5
- Weights applied for 12 < p_{incident} <120 GeV.
 - Data cross-section scaled using FLUKA
 - Checked by comparing to NA61 pC $\rightarrow \pi^{\pm}$ X at 31 GeV/c [Phys.Rev. C84 (2011)034604]
- Interactions on AI, Fe, He and Air treated as if on C

22 May 2014

Which pions matter?

- NOvA Near and Far Detectors: peak flux at about x_F=0.05-0.07 (6-8GeV)
- MINERvA and MINOS ND, Low Energy beam: peak at x_F=0.06

Which pions matter?

- NOvA Near and Far Detectors: peak flux at about x_F=0.05-0.07 (6-8GeV)
- MINERvA and MINOS ND, Low Energy beam: peak at x_F=0.06

NA49 for pC-> π^+X

 $f(x_F, p_T) = E d^3s/dp^3 = invariant production cross-section$ Transverse Momentum vs Feynman x for π^+ $f(x_{F}, p_{T})$ for π^{+} using FTFP_BERT LE Neutrino Mode 10^{3} 16000 10² 14000 π^+ which make x_F=0.0 0.8 10 $x_{F}=0.05 (\times 10^{-1})$ a v_{μ} in MINERvA 12000 o vents/1e20POT $x_{F}=0.10 (\times 10^{-2})$ 1 ^{9.0} b¹[GeV/c] $x_{F}=0.15 (\times 10^{-3})$ 8000 x_F=0.20 (× 10⁻⁴) $f[mb/(GeV^2/10^{-2})]$ focusinc x_⊨=0.25 (× 10⁻⁵) 6000 $x_{F}=0.30 (\times 10^{-6})$ peak 4000 $x_{\rm F}=0.40 \ (\times 10^{-7})$ tai $x_{r}=0.50 (\times 10^{-8})$ 2000 10⁻⁶ 0.2 0.3 0.4 0.1 0.5 0.6 0.7 0.8 • data X_F 10⁻⁷ Eur. Phys. 49,897-917(2007) 10⁻⁸ montecarlo **Uncertainties** 10⁻⁹ Geant4 Version 9_2_p03 7.5% systematic 10^{-10} 2-10% statistical 0.5 2 1.5 p_ (GeV/c)

22 May 2014

Reweighting Summary

•	What	MINERvA	does	reweigh
	vvial	WIINERVA	uues	reweign

neutrino energy	average # interactions / event	% interactions reweighted
3-4 GeV	1.362	75.18%
15-16 GeV	1.303	71.93%
30-31 GeV	1.30	64.0%
0-30 GeV	1.463	69.62%

• What MINERvA does not reweight:

produced particle	Uncon- strained	all
р	0.108	0.236
π^{\pm}	0.015	0.877
K±	0.002	0.031
$K_{S} K_{L}$	0.028	0.028
n	0.049	0.049

Current Status of Flux Uncertainties

- Current uncertainties based on NA49 and model comparisons where no data exist
- More measurements (esp. MIPP thick target measurements) should help
- This implies that all hadron production measurements give consistent predictions
- Enter MIPP...

Current Flux Uncertainties

MIPP π/K ratio only

MIPP for pC $\rightarrow \pi^+X$

- Goal: collect comprehensive hadron production cross-section data set with particle id using various beams and targets (thick and thin).
- These data may then be used to tune / validate MC event generators.

- Full acceptance spectrometer
 - Two analysis magnets deflect in opposite directions
 - TPC + 4 Drift Chambers + 2 PWCs

J. Paley, FNAL JETP seminar 4/8/14

 Designed for excellent particle ID (PID) separation (2-3σ)

22 May 2014

MIPP Sensitivity

NuMI Low Low energy energy Focusing peak energy tail"

• Statistical: mostly a few % Systematic: 5-7%

MIPP Results and NuMI Acceptance

MIPP comparison to GEANT4

NA61 measurements of NuMI Target

- Will hear much about NA61 from Alicia Marino
- Work underway to get NuMI target in this hadron production experiment also
- Potential Advantages of NA61 data set over NA49 or MIPP data:
 - Will be able to tie thin and thick target together in same experimental apparatus (lower systematics on measuring effects of tertiary interactions)
 - Improved kinematic coverage

IN SITU MUON FLUX CONSTRAINTS: SEE ALYSIA MARINO'S TALK

IN SITU NEUTRINO FLUX CONSTRAINTS

NEUTRINO-ELECTRON SCATTERS "LOW NU" FLUX

Constraint on Total Flux

- Neutrino-electron scattering provides theoretically clean measure of total flux
- Signal at MINERvA relatively easy: single electron moving in beam direction
- Catch: process is 1/2000th the size of neutrino-nucleon scattering
- Need good angular resolution and electron ID
- Use dE/dx at beginning of track candidate to isolate electrons from photons

Neutrino-Electron Scattering Low and Medium Energy Beam

- Low Energy result:
 - v-e scattering events after background subtraction and efficiency correction:
 - 123.8 ± 17.0 (stat) ± 9.1 (sys) total uncertainty: 15%
 - Prediction from Simulation: 147.5 ± 22.9 (flux)
 - Flux uncertainty: 15.5%
- Medium Energy Projection:
 - Expect statistical uncertainty of ~2%
 - − Systematic uncertainty on this measurement is now $7\% \rightarrow 5\%$ "easily"
- Could become the most well-constrained flux in history of neutrino beams

22 May 2014

Low-v flux Technique: another standard candle

 Use Charged Current Events:

Use Charged Current Differential cross section can be expressed as:

$$\frac{d\sigma}{d\nu} = A(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2})$$

- v : energy transferred to the hadronic system
- E : neutrino energy

A, B, and C: integrals over structure functions (on target material!)

Normalize to high energy inclusive cross section

- Previous measurement from MINOS
 - Neutrino: 3~50 GeV
 - Flux uncertainty: 5%~8%
 - Dominated by systematic uncertainties at low energy
 - Dominated by statistical uncertainty at higher energies

MINOS Collaboration, Phys. Rev. D 81,

L. Ren, APS 2014

22 May 2014

Low-v flux Technique, II

- MINERvA plan for low-v analysis:
 - Take advantage of totally active detector technology, lower v cuts
 - Will run this analysis on neutrino and antineutrino beams
 - Can also use this technique on rui with modified beam configurations
 - Normalize to NOMAD σ_{tot} from 9-12GeV on Carbon (±3.6%)

- Inclusive sample:
 - Vertex within fiducial volume
 - MINOS-matched track with negative charge
- •Flux sample:
 - 2<E<3 GeV, v <0.3 GeV
 - 3<E<7 GeV, v <0.5 GeV</p>
 - 7<E<12 GeV, v <1 GeV

22 May 2014

Expected Uncertainties in MINERvA low-v Analysis

- **Detector Energy scales**
 - Muon energy (range and curvature both have associated uncertainties)
 - Hadron energy response of detector
- **GENIE Cross Section Model**
 - Comes in for corrections vs v in extrapolation from high energy
 - Also comes in because of detector modeling: muons need to be accepted in MINOS near detector
 - Some FSI uncertainties not yet incorporated here
- **GEANT4** Detector response model
 - Have to consider uncertainties in pion, neutron interaction cross section, formation zone effects, etc.

"SPECIAL RUNS" FOR FLUX DETERMINATION

Getting to Neutrino Energy Spectrum: Special Runs to Understand Flux

- By changing target position with same focusing elements, can disentangle focusing uncertainties from hadron production uncertainties
 - Different geometry focuses different parts of xF p_T space
 - MINERvA is doing this by using low ν events

MINOS Special Run Experience

- Big change in high energy "tail" of LE flux (recall "15% model differences")
- Remaining data/MC discrepancies ~5-10% level
- This is the "SKZP flux" that Argoneut uses

Phys. Rev. D76 (2007) 072005

22 May 2014

Conclusions

•	Many different ways to constrain the NuMI Flux	(Uncertainties)
	 Hadron Cascade model comparisons 	15%
	 External Measurements 	
	 Thin target, various proton energies 	10%
	 Thick target, 120GeV proton energies 	6-7%
	 In Situ Techniques 	
	 Secondary Muon Fluxes 	15-30%
	 Neutrino-electron events (integrated energy-weighted flux) 	15% (LE)→ 5 (ME)%
	Low-nu flux measurements	7-8%
	 Tests with modified beamline geometries 	
	 Moving target relative to horn 	<7%
	 Turning off the horn 	
•	Getting to 5% flux uncertainty will be a challenge achievable with all these methods working toget	e, may be her

22 May 2014

BACKUP SLIDES

Reweighting for Hadron Production

• Closeup around the focusing peak: differences <10%

MINERvA low-v Systematic Uncertainties

Muon Energy Scale

	Error Source	Error
	MINOS Range	2.%
	MINOS Curvature $(p_{\mu} < 1GeV)$	2.5%
	MINOS Curvature $(p_{\mu} > 1 GeV)$	0.6%
•	MINERvA $\frac{dE}{dx}$ (scintillator)	$30 { m MeV}$
	MINERVA $\frac{dE}{dx}$ (C, Fe, Pb)	$40~{\rm MeV}$
	MINERvA mass (scintillator)	$11 { m MeV}$
	MINERvA mass (C, Fe, Pb)	$17 { m MeV}$

Hadron Energy Scale

Subset of GENIE Systematic Variations

1 sigma	default value	parameter in option file	GENIE Knob name	process
+25%, -15%	0.990	QEL-Ma	MaCCQE	QEL
DipoleELFormFactors Model	BBA05ELFormFact orsModel	ElasticFormFactorsModel	VecFFCCQEShape	
+/-20%	1.120	RES-Ma	MaRES	RES
+/-10%	0.840	RES-MV	MVRES	
+/-50%	0.1 0.1	DIS-HMultWgt-vp-CC-m2 DIS-HMultWgt-vp-NC-m2	Rvp1pi	DIS
+/-50%	0.3 0.3	DIS-HMultWgt-vn-CC-m2 DIS-HMultWgt-vn-NC-m2	Rvn1pi	
+/-50%	1. 1.	DIS-HMultWgt-vp-CC-m3 DIS-HMultWgt-vp-NC-m3	Rvp2pi	
+/-50%	1. 1.	DIS-HMultWgt-vn-CC-m3 DIS-HMultWgt-vn-NC-m3	Rvn2pi	

MINERvA low-v Systematic Uncertainties, II

Other GENIE variations

	1	(
GENIE Knob name	Description	1σ
MFP_pi	mean free path for pions	$\pm 20\%$
MFP_N	mean free path for nucleons	$\pm 20\%$
${\rm FrAbs_pi}$	pion fates - absorption	$\pm 30\%$
FrCEx_pi	pion fates - charge exchange	$\pm 50\%$
FrElas_pi	pion fates - elastic	$\pm 10\%$
$Frinel_pi$	pion fates - inelastic	$\pm 40\%$
FrPiProd_pi	pion fates - pion production	$\pm 20\%$
FrCex_N	nucleon fates - pion charge exchange	$\pm 50\%$
FrElas_N	nucleon fates - elastic	$\pm 30\%$
Frinel_N	nucleon fates - inelastic	$\pm 40\%$
$FrAbs_N$	nucleon fates - absorption	$\pm 20\%$
FrPiProd_N	nucleon fates - pion production	$\pm 20\%$
AGKYxF1pi	AGKY hadronization model x_F	$\pm 20\%$
Theta_Delta2Npi	Δ decay angular distribution	on/off
RDecBR1gamma	Res decay branching ratio to gamma	$\pm 50\%$

Muon Monitors in NuMI

- The NuMi Beam Line has four ionization chambers that perform an integral flux measurement and differentiate it using different thresholds imposed by :
 - The spatial disposition of the monitors and their materials in between -> Thus constraining the energy spectrum of muons.
 - 1: $E_{\mu,\pi}$ 4.2 GeV (E_v 1.8 GeV)
 - 2: $E_{\mu,\pi}^{\mu,\pi}$ 11 GeV (E_{ν} 4.7 GeV)
 - 3: $E_{\mu,\pi}^{\mu,\pi}$ 21 GeV (E_{ν} 9 GeV) 4: $E_{\mu,\pi}$ 39.7 GeV (E_{ν} 17 GeV)
 - The variable configurations of horn current and target position -> Thus constraining parent hadrons (xf,pt).

22 May 2014

Horn Current Scans

• By changing the horn current and taking a few spills, we can sweep through the pt pz phase space for pions

M-J. Bustamante-Rosell, 4/14/14 AEM talk

- Analysis in progress
- Data exists for LE beam also, several target positions
- Based on

 L. Loiacono,
 "Measurement of the Muon Neutrino Inclusive
 Charged Current Cross
 Section on Iron Using the
 MINOS Detector," PhD
 Thesis, UT Austin 2010
 - Several scans, several target positions