Prospects for Improvements in Neutrino Flux Understanding Alysia Marino, University of Colorado Boulder **NuINT 2014** May 23, 2014

Accelerator-Generated Beams

 This talk will primarily focus on improvements for future long-baseline beams, especially LBNE and T2K/HyperK

Outline

- Current Status of Flux Predictions
- In Situ Measurements
 - Muon Monitors
- External Hadron Production Measurements
 - MIPP
 - Future NA61/SHINE Measurements

MC Hadron Prod Predictions

Phys Rev D 87 012001 (2013)

 Disagree with MC predictions by 50% or more in some areas

J. Palev. Fermilab Seminar April 8. 2014 **MIPP** Preliminary $F^{+} = N(\pi^{+})_{\text{Data}} N(\pi^{+})_{\text{MC}}$ 5 9 Data/MC 0.50 - 2.00 GeV/c, F+5.0 · · · · · · · · · · · · · · · · · 40 - 0.50 GeV/c, F+4.0 30 - 0.40 GeV/c. F+3.0 0.20 - 0.30 GeV/c, F+2.0 10 1 p, (GeV/c)

MC v Flux Predictions

Phys Rev D **77** 072002

• Well known that out of the box MC flux predictions do not agree well with data

Flux Tuning

- MINOS used ND and many beam configs
- This strategy will continue to be useful for NOvA oscillation measurements
- But much harder to implement for T2K/HK and LBNE
- Would also like to constrain/tune the hadron production simulation with v cross-section independent data
- Independent flux measurement also useful for short baseline sterile v and heavy v decay searches

Current Hadron Production Data

- protons at 8.9 GeV on Be
- protons at 31 GeV/c on C
- protons at 120 GeV/c on C
- protons at 400-450 GeV/c on Be

Production Data Relevant for 8.9 GeV/c p + Be

Data	Experiment	Hadron	Published	
8.9 GeV/c p + thin Be	HARP	π [±]	Eur. Phys J C52 (2007)	
6.4, 12.3, and 17.5 GeV/c p + thin Be	BNL E910	π [±]	Phys. Rev. C77, 015209 (2008)	

- MiniBooNE flux predictions, 7-10% PhysRevD.79.072002
- MicroBooNE will build on 10 years of experience with Booster beam
- Analysis of HARP thick target data currently in progress

Production Data Relevant for 31 GeV/c p + C

Data	Experiment	Hadron	Published	
19.2 GeV/c p on p,Be,Al, Cu, and Pb	Allaby et al	p,pbar, π ^{±,} K [±]	Tech. Rep. 70-12 (CERN, 1970).	
24 GeV/c p on Be, Al, Cu, and Pb targets	Eichten et al	p,pbar, π ^{±,} K [±]	Nucl. Phys. B 44, 333 (1972).	
31 GeV/c p + thin C target	NA61/SHINE	π [±]	Phys. Rev. C84 (2011) 034604	
31 GeV/c p + thin C target	NA61/SHINE	K+	Phys. Rev. C85 (2012) 035210	

• Current published T2K flux predictions rely heavily on these datasets

Current Uncertainties - T2K

Phys Rev D 87 012001 (2013)

- Hadron uncertainties (above) dominate T2K flux errors
 - Lower energies dominated by secondary p,n production
 - Higher energies dominated by kaon production

Production Data Relevant for 120 GeV p + C

Data	Experiment	Hadron Published		
I58 GeV/ср+ thin C target	NA49	π±	Eur.Phys.J. C49 (2007) 897	
I58 GeV/с р + thin C target	NA49	K+	G.Tinti Ph.D. thesis	
I58 GeV/с р + thin C target	NA49	Ρ	Eur.Phys.J. C73 (2013) 2364	
I 20 GeV/c p + thin C	MIPP	K/π ratio A. Lebedev Ph D thesi		
120 GeV/c p + NuMI C target	MIPP	π±	arXiv: 1404:5882	

Current Uncertainties -

Minerva

D. Harris, previous session

Current Flux Uncertainties

 No ND tuning here

Production at ~400 GeV/c

Data	Experiment Hadron		Published	
400 GeV/c p + 10-50 cm Be target	NA20	π [±] , K [±] ,p,pbar	CERN 80-70 (1980)	
450 GeV/с р + I0 cm Be target	NA56/SPY	K/π ratio	Phys. Lett. B420 (1998) 225	
450 GeV/c p + 10 cm Be target	NA56/SPY	π±	Phys. Lett. B425 (1998) 208	
450 GeV/c p + Be target	NA56/SPY	π±, K±,p,pbar	Eur. Jour. Phys. C10 (1999) 605	

- Accuracies in the 5-10% range
- Parameterized in Eur. Jour. Phys. C20 (2001) 13

Impact on Future beams

- For LBNE and T2HK
 - Near and far detectors likely will have very different detector technologies
 - Target is (likely) fixed in place
 - MINOS strategy will be difficult to implement here
- Need improvements in in-situ constraints (µ Monitors) and external measurements

Muon Monitors

T2K Si PIN diodes Ionization chambers

- Typically gas or solid state ionization counters
- Challenge to interpret since sensitive to e's

NuMI Muon Monitors

• 4 sets of ionization chambers

DECAY PIPE 78" I.D. WELDED STEEL VACUUM PIP

30 PCF MIN

W x 21'-6"H HORSESHOE SHAPE BLAST TUNNEL, IN ROCK UNLINED

CONTINUATIC

-6" MIN. THICKNES

- Each alcove sees a different threshold
- Vary horn current and target position to map out hadron pt and pz space

PLAN

Using Muon Monitors to Constrain v Flux

- NuMI muon monitors have been used to extract a V_{μ} flux (L. Loiacono PhD dissertation, UT Austin 2010)
- Flux normalized to $E_v > 26$ GeV ND data
- Errors dominated by nonmuon backgrounds and mumon ionization scale

WINOS ND 150 150 Tuned LE010 Tuned LE250 Tuned LE250 For reference only Preliminary 150

10

E_v (GeV)

μ Monitor energy threshold.

15

20

L. Loiacono, NBI, 2010

New µMon in Alcove 4

- Ionization counters recently placed in µ alcove
- Response for alcove 4 is largely insensitive to horn since it sees the highest energy muons from pions not in focussing peak

Design Considerations

- Ideally the muon monitors should
 - Discriminate between muons and other sources of ionizing radiation
 - Provide an absolute normalization of the muon flux
 - Provide information about the energy spectrum of the muons

Alternative Designs

- In addition to ionization counters, LBNE also proposing
 - Stopped Muon Counters
 - Threshold Gas Cherenkov Detectors

Stopped Muon Counters

- Muons stop in non-scintillating oil
- Look for muon decay electrons after beam pulse
- Also look for ^{12}B decay following μ^{-} capture on ^{12}C
- Scintillating veto to reject external n's
- Place detectors at different depths of shielding to pick out flux at specific energies

E. Zimmerman & D. Poulson, Colorado

Prototype Detectors

 Prototype stopped muon and gas Cherenkov detectors currently located in NuMI Alcove 2

G. Mills, LANL

Gas Cherenkov Prototype Data

NuMI pulse in Gas Cherenkov G. Mills, LANL

Also plan to place detectors in alcove 1 this year

Connection to v Flux

 Muons that exit absorber originate from pions that contribute to neutrino flux above 4 GeV

External Measurements

- Fermilab E907: Main Injector Particle <u>MIPP</u> Production (MIPP)
 - p, π,K beams 5 GeV/c-120 GeV/c on thin LH₂,C,Be, Bi, U targets and NuMI LE replica target
 - Collected data from 2004-2006
- CERN NA61: SPS Heavy Ion & Neutrino
 Experiment (SHINE)

- p and heavy ion beams, from 31 GeV/c 350 GeV/c
- Collecting data since 2007

Improvements at 120 GeV/c from MIPP Data

- Just released p+replica target data @ 120 GeV/c arXiv: 1404:5882
- 5-10% uncertainties
- Forward n measurement too Phys.Rev.D83:012002,2011

Improvements at 31 GeV/c from NA61/SHINE

Data	Year	evts (x10 ⁶)	Status	T2K using these so far
2 cm target	2007	0.7	π [±] :Phys. Rev. C84 (2011) 034604 K ⁺ :Phys. Rev. C85 (2012) 035210 Λ,K ₀ : Phys. Rev. C89 (2014) 025205	Syst errors 5-8%, but dominated
2 cm target	2009	5.4	Preliminary π [±] , K [±] , p, K ⁰ s, Λ To be published soon	by stat erro
full target	2007	0.2	π [±] method: Nucl. Inst. Meth.A701 (2013) 99	
full target	2009	2.8	End of 2014?	
full target	2010	10		

• Improved syst. and stat. errors in 2009 data

Future Measurements at Higher Energies with SHINE

120 GeV p+C

event in NA61

- Proposal to take p and π data at 60-120 GeV/c to benefit future Fermilab neutrino program
 - Thin Be, C, and Al targets
 - Potentially also NOvA or LBNE replica target data
 - Goal is <5% uncertainties
 - Tentatively plan start collecting data in fall 2015 (subject to SPSC approval)

- Current NA61/SHINE has good coverage of π ,K,K_{0s}, p, n, Λ_0 that contribute to LBNE flux (red line).
- With additional forward tracking could be improved (green line).

Neutron Measurements?

- A new projectile spectator detector (an ECAL) was commissioned for NA61 in 2013
- Could potentially use this to make direct measurements of forward n production

Need for π data

Summary

- Better flux predictions are needed for future cross section measurements and oscillation measurements with accelerator beams
- Requires improved sensitivity with in situ measurements and additional hadron production data
 - Increased statistics and data analysis improvements from NA61 will improve flux predictions for T2K/T2HK over the next 2 years.
 - Possible opportunity to take data starting in 2015 at in SHINE at 60-120 GeV/c could similarly benefit NuMI and LBNE.