

DIS/Hadronization

Jarek Nowak

IOP Institute of Physics

Nulnt14

9th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region

19-24 May 2014, Selsdon Park Hotel, Surrey, UK

Outline

- Deep Inelastic Scattering
 - Cross section
 - Parton Distribution Functions
- Hadronization
 - Phenomenological approach (KNO scaling)
 - Theoretical approach (Lund model)
 - Resonance excitation DIS transition region
- Monte Carlo implementation
 - NuWro
 - GENIE

Why do we care about hadronization?

• Deep inelastic scattering (DIS)

- Cross section is given by contraction of leptonic and hadronic tensors $\frac{d^2\sigma(\nu\bar{\nu})}{dxdy} = \frac{G_F^2 y}{16\pi} \frac{1}{\left(1 + \frac{Q^2}{M^2 + u}\right)^2} L_{\mu\nu} W^{\mu\nu},$
- Kinematic variables
 - Four momentum transfer
 -Energy transfer

$$Q^{2} = -q^{2} = -(k - k')^{2} \stackrel{LAB}{=} -m_{l}^{2} + 2E_{\nu}(E' - |\vec{k}'|\cos\theta_{\mu})$$

$$\nu = \frac{q \cdot p}{M} \stackrel{LAB}{=} E_{\nu} - E'$$

- Hadronic invariant mass -- inelasticity - B. scaling variable $W^2 = (q+p)^2 \stackrel{LAB}{=} M^2 + 2M\nu - Q^2.$ $y = \frac{p \cdot q}{p \cdot k} \stackrel{LAB}{=} \frac{\nu}{E_{\nu}}$ $x = \frac{-q^2}{2p \cdot q} \stackrel{LAB}{=} \frac{Q^2}{2M\nu}$

Cross section

Leptonic tensor

$$L_{\mu\nu} = 2Tr[(k' + m_l)\gamma_{\mu}(1 - \gamma_5)(k + m_{\nu})\gamma_{\nu}] \\ = 8\left(k'_{\mu}k_{\nu} + k_{\mu}k'_{\nu} - g_{\mu\nu}k' \cdot k \mp i\epsilon_{\mu\nu\alpha\beta}k^{\alpha}k'^{\beta}\right)$$

Hadronic tensor
 Unpolzarized target

$$W^{\mu\nu} = -g^{\mu\nu}W_1 + \frac{p^{\mu}p^{\nu}}{M^2}W_2 - i\epsilon^{\mu\nu\rho\sigma}\frac{p_{\rho}q_{\sigma}}{2M^2}W_3 + \frac{q^{\mu}q^{\nu}}{M^2}W_4 + \frac{(p^{\mu}q^{\nu} + p^{\nu}q^{\mu})}{2M^2}W_5 + i\frac{(p^{\mu}q^{\nu} + p^{\nu}q^{\mu})}{2M^2}W_6.$$

W_i are real functions describing structure of nucleons

$$\frac{d^2\sigma}{dxdy} = \frac{G_F^2 y M E_{\nu}}{\pi (1 + Q^2 / M_{W,Z}^2)^2} \left[\left(xy + \frac{m_l^2}{2E_{\nu}M} \right) W_1 + \left(\frac{E}{M} - \frac{yE}{M} - \frac{xy}{2} - \frac{m_l^2}{4ME_{\nu}} \right) W_2 \right]$$

= $\left(\frac{xyE}{M} \left(1 - \frac{y}{2} \right) - y \frac{m_l^2}{4M^2} \right) W_3 + \left(xy \frac{m_l^2}{2M^2} + \frac{m_l^4}{4M^3E_{\nu}} \right) W_4 - \frac{m_l^2}{2yME_{\nu}} W_5 \right], \quad (2.46)$

- W₆ vanishes during contraction of two tensors
- W_4 and W_5 are proportional to lepton mass (negligible)
- W_j are general structure function which can describe all types of interactions (QE, RES, COH, DIS added incohorently)

Final state hadrons

- The W_i are not sufficient for the experiments
 - Only kinematics of the final lepton
 - Remaining invariant mass has to be distributed to final state hadrons

Parton model

• Usually we rewrite the W_i in the dimensionless structure functions

 $F_1(x,Q^2)=W_1(x,Q^2), \quad F_i(x,Q^2)=W_i(x,Q^2)\cdot\nu/M \ (i=2,...,5),$

Jarek Nowak, Lancaster Univeristy

Hadronization model

- DIS gives inclusive cross section
 - Problem: in event generator we need a hadronization model to obtain exclusive channels
 - Solution: → model based on LUND string fragmentation implemented in PYTHIA generator

[Sjostrand et al, Comput. Phys. Commun. 135 (2001)], [Sjostrand et al, hep-ph/0108264]

- BUT
 - Pythia can generate events only for E > 10GeV
 - In fragmentation routines of PYTHIA there are no limits for energy of the considered system
 - We need method of selection interacting quark

PYTHIA hadronization

- All generators use PYTHIA for hadronization at high invariant masses. (LUND string model)
 - GENIE: Transition window from 2.3 to 3.0 GeV/c²
 - GiBUU: Uses PYTHIA for hard scattering and hadronization, transition window from 2.0 to 2.4 GeV/c²
 - NEUT: above 2.0 GeV/c²
 - NuWro: above 1.21 GeV/c²
- For a transitions regions MC generator use various approaches
 - Phenomenological (KNO scaling)
 - LUND model

KNO scaling – phenomenological approach

 Distribution of charged hadrons is predicted by the KNO scaling

 $\langle n_{ch} \rangle P(n_{ch}) = 2 \frac{e^{-c} c^{cz+1}}{\Gamma(cz+1)},$

- MC implementation
 - From available W calculate <n_{ch}>
 - Select multiplicity from KNO distribution
 - Select baryon and mesons and assign them 4-momenta

Independent fragmentation (LUND model)

 The fragmentation starts with struck quark q₀ which creates a meson (baryon) with quark (diquark) with z₀ of system energy. Quark q₁ gets

 $(1-z_0)=z_1$

- The fragmentation is stopped at E<E_{min}
- Last step is cluster fragmentation (two hadrons) or cluster collapse (one hadron)

			also GEIVIE EXCEPTION
Parameter	Value	Value	Description
	(Wroclaw)	(NUX)	×
PARJ(2)	-	0.21	(D=0.30) is P(s)/P(u), the suppression of s
			quark pair production in the field compared
			with u or d pair production.
PARJ(21)	-	0.44	(D=0.36 GeV) corresponds to the width oin
			the Gaussian px and py transverse momentum
			distributions for primary hadrons. See also
			PARJ(22) -PARJ(24).
PARJ(23)	-	0.01	PARJ(23-24) : (D=0.01, 2.) a fraction
			PARJ(23) of the Gaussian transverse
			momentum distribution is taken to be a factor
			PARJ(24) larger than input in PARJ(21). This
			gives a simple parametrization of non-
			Gaussian tails to the Gaussian shape assumed
			above.
<u>+</u>			
PARJ(32)	0.1 GeV	-	(D=1. GeV) is, with quark masses added, used
			to define the minimum allowable energy of a
			colour-singlet jet system.
PARI(33)	0.5 GeV	0.2	(D=0.8 GeV, 1.5 GeV) are together with
	0.5 001	GeV	quark masses used to define the remaining
PARI(34)	1.0 GeV		energy below which the fragmentation of a jet
1110(34)	1.0 001		system
			is stopped and two final hadrons formed
			PARJ(33) is normally used, except for
			MSTJ(11)=2, when $PARJ(34)$ is used.
PARJ(36)	0.3 GeV	-	(D=2.) represents the dependence on the mass
			of the final quark pair for defining the
			stopping point of the fragmentation. Is
			strength and the day the shellow of DADI(22)

J. Nowak (NuWRO), Phys.Scripta T127 (2006) 70-72

- PYTHIA parameters
- Parameters were finetuned for NuWro generator to reproduce charged hadron multiplicity

• MSTJ(17) was set to be 3 rather then 2 (number of tries to find two hadrons with masses lower than claster mass).

Transition region in GENIE

- The model for the cross section will affect many things.
- DIS vs. 'non-resonant background' in the resonance region.
- The KNO parameters obtained from fit to electron scattering data

T. Yang et al, Eur.Phys.J. C63 (2009) 1-10. T. Yang, Ph. D Thesis, Stanford U (2009)

Hadronization in NuWro

- NuWro is a MC generator which uses PYTHIA from about W=1.21 GeV/c²
- It was necessary as in NuWro we have only Δ resonance and remaining cross section is describe in terms of DIS

Quark-hadron duality

Bloom and Gilman showed that for electron scattering: structure functions averaged over resonances are approximately equal to leading twist contributions.

Transition region in NuWro

- There is a smooth transition between Δ and DIS regions for the single pion production

 α_0 values

 $\nu n \rightarrow \mu^- n \pi^+$

0.2

 $\bar{
u}p
ightarrow \mu^+ p \pi^-$

0.2

 $u p
ightarrow \mu^- p \pi^+$

0.0

 $\bar{\nu}n \rightarrow \mu^+ n\pi^-$

0.0

$$\frac{d\sigma^{SPP}}{dW} = \frac{d\sigma^{\Delta}}{dW} (1 - \alpha(W)) + \frac{d\sigma^{DIS}}{dW} F^{SPP}(W) \alpha(W)$$
$$\alpha(W) = \Theta(W_{min} - W) \frac{W - W_{th}}{W_{min} - W_{th}} \alpha_0$$
$$+ \Theta(W_{max} - W) \Theta(W - W_{min}) \frac{W - W_{min} + \alpha_0(W_{max} - W)}{W_{max} - W_{min}}$$
$$+ \Theta(W - W_{max})$$

$$W_{min} = 1.3 GeV, W_{max} = 1.6 GeV$$

• Single pion production functions were obtained from LUND

 $\nu n \rightarrow \mu^- p \pi^0$

 $\frac{0.3}{\bar{\nu}p \to \mu^+ n\pi^0}$

0.3

Probability of scattering on parton

- Fragmentation algorithm
 - Cross section is approximately sum of contributions from separate quarks, where cross section for scattering on quark q. (valance or sea quark)

$$rac{d^2\sigma^{
u q_i
ightarrow \mu q_j}}{dxdy} \sim q_i K_i$$

- Kinematic factor for quark q_i.
- Probability of scattering on a quark is given

$$P(q_i) = \frac{\frac{d^2 \sigma^{q_i}}{dxdy}}{\sum_{j=q,\bar{q}} \frac{d^2 \sigma^{q_j}}{dxdy}}$$

[Juszczak, Nowak, Sobczyk, hep-ph/0512365]

Scattering on given quark

• The process $\nu N \to l^- X$ one can split into 5 cases corresponding to scattering off separate parton $d_{val}, d_{sea}, \bar{u}_{sea} \to \bar{d}, \bar{u}_{sea} \to \bar{s}, s_{sea}$

• Fragmentation of system quark-diquark is performed by PYTHIA6 routines. However, in case of $\bar{u}_{sea} \rightarrow \bar{s}$, s_{sea} first step, when strange or charm meson is produced, is performed in NuWro.

Reconstruction of final states

Charged hadron multiplicity

(D. Zieminska et al. Phys. Rev. D27, 47(1983))

Hadron multiplicities

- All generators were check against data
- Use experimental data for charge hadron multiplicities
- Usually following fit was used

 $\langle n_{ch} \rangle = A + B \ln W^2$.

• Kuzmin and Naumov proposed recently (arXiv:1311.4047)

$$< n_{ch} >= \begin{cases} a_1 + b_1 \ln X + c_1 \ln^2 X & \text{if } X \le X_0 \\ a_2 + b_2 \ln X + c_2 \ln^2 X & \text{if } X > X_0 \end{cases}$$
$$X = \frac{W^2}{(M + m_\pi)^2}, X_0 = \frac{W_0^2}{(M + m_\pi)^2}, W_0 \text{ of the order of 3 GeV.}$$

Conclusion

- Hadronization in difficult
- Many decisions have to be made based on limited data.
- New experiments soon enough will check assumption made in the Monte Carlo generators.