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Nuclear electroweak currents
Inclusive e/ν scattering and two-body currents
Role of interference between 1b and 2b currents
Summary
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Nuclear interactions

v = v0(static) + vp(momentum dependent)→ v(OPE)
fits large NN database with χ2 ' 1

NN interactions alone fail to predict:
spectra of light nuclei
Intermediate-energy Nd and low-energy n-α scattering
nuclear matter E0(ρ)

Inclusion of 2π and 3π-NNN interactions leads to an
excellent description of spectra of s- and p-shell nuclei
(and n-α scattering)
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Spectra of light nuclei
Pieper and Wiringa, private communication
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Dominant features of two-nucleon potential

v in T,S=0,1 (d-like) v in T,S=1,0 (quasi-bound)

Short-range repulsion (common to many systems)
Intermediate to long-range tensor character (unique to
nuclei)
Strong spin and isospin-dependent correlations
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Impact on pair spatial distributions
Forest et al. (1996)

T,S=0,1 (d-like) T,S=1,0 (quasi-bound)

ρMS
T=0,S=1(r) depends on r and MS :

Universality of short-range structure: scaling of ρMS
T,S(r)
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Impact on pair momentum distributions
Wiringa et al. (2014)
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Impact on pair momentum distributions
Wiringa et al. (2014)
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Electromagnetic current operators

Set of (conserved) EM current operators

contain no free parameters and are consistent with
short-range behavior of v and V 2π

Many-body EM charge operators represent relativistic
corrections to ρ(1), and lead to small corrections
These many-body corrections are important to
reproduce a variety of nuclear EM observables
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Elastic form factors of A = 3 and 4
Marcucci et al. (2005); Viviani et al. (2007)

3He/3H isovector magnetic FF 4He charge FF

Leading two-body currents are isovector
Two-body charge contributions, while small, crucial for
reproducing 2H, 3H, 3He, and 4He exp longitudinal f.f.’s
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Weak current operators

Charge-changing (CC) and neutral (NC) weak currents

jµCC = jµ± + jµ5±

jµNC = −2 sin2θW jµγ,S + (1− 2 sin2θW ) jµγ,z + jµ5z

Contributions to two-body axial currents from π and ρ
exchange, ρπ transition, and ∆-excitation (g∗A)

N -∆ axial coupling constant g∗A fixed by fitting the GT
m.e. in 3H β-decay
jµCC reproduces well µ-capture rates in 2H and 3He
Studies of weak transitions in light nuclei in progress . . .
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Inclusive e/ν scattering

Inclusive ν/ν (−/+) cross section given in terms of five
response functions

dσ

dε′dΩ
=

G2

8π2
k′

ε

[
v00R00+vzz Rzz−v0z R0z+vxxRxx∓vxy Rxy

]

Rαβ(q, ω)∼
∑
i

∑
f

δ(ω+mA−Ef )〈f | jα(q, ω) | i〉∗〈f | jβ(q, ω) | i〉

In (e, e′) scattering, interference Rxy=0 , jzγ ∼ (ω/q)j0γ ,
and only R00=RL and Rxx=RT are left
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(e, e′) inclusive response: scaling analysis
Donnelly and Sick (1999)

Scaling variables: ψ′ ' y/kF and fL,T = kF RL,T /GL,T

Data at variance with PWIA expectation that fL ' fT
Excess strength in transverse response
Notion that the QE response is dominated by
single-nucleon scattering is too simplistic
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Sum rules for (e, e′) inclusive scattering
Schiavilla et al. (1989); Carlson et al. (2002)

Sα(q) = Cα

∫ ∞
ω+
th

dω
Rα(q, ω)

G 2
Ep(q, ω)

= Cα

[
〈0 | O†α(q)Oα(q) |0〉− | 〈0 | Oα(q) |0〉 |2

]
Cα are normalization factors so as Sα(q →∞) = 1
when only one-body terms are retained in Oα:

CL =
1

Z
, CT =

2m2

q2
1

Zµ2p +Nµ2n

Sα can be calculated exactly with quantum Monte Carlo
methods
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Longitudinal and transverse sum rules in 12C
Lovato et al. (2013)

Direct comparison between theory and experiment
problematic, especially for RT (q, ω):

Rα(q, ω) measured by (e, e′) up to ωmax ≤ q
present theory ignores explicit pion production
mechanisms, crucial in the ∆-peak region of RT

Contribution for ω > ωmax estimated by assuming

REXP
α (q, ω > ωmax;A) ∝ Rα(q, ω; deuteron)
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EM euclidean response functions in 4He
Carlson and Schiavilla (1992, 1994); Carlson et al. (2002)

Longitudinal Transverse

Eα(q, τ) = eτ q
2/(2m)

∫ ∞
ω+
th

dω e−τ(ω−E0) Rα(q, ω)

G2
Ep(q, ω)

= eτ q
2/(2m)〈0 | O†α(q)e−τ(H−E0)Oα(q) |0〉 − (elastic)

At τ = 0, Eα(q; 0) ∝ Sα(q); as τ increases, Eα(q; τ)
probes strength in QE region
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Weak NC Sxx(q) (transverse) sum rule in 12C
Lovato et al. (2014)

Sxx(q) = Cxx

∫ ∞
ωel

dωRxx(q, ω) = Cxx〈0 | j⊥†NC(q) j⊥NC(q) |0〉

Large increase (∼ 30%) in all weak NC responses Rα,
but for R00, due to two-body (2b) terms in jµNC
Important interference effects between 1b and 2b (as
well as among 2b) terms
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1b-2b interference effects: sum rules

S − S1b = 〈A |
(
j†1b j2b + h.c.

)
+ j†2bj2b |A〉

0 0.5 1 1.5 2 2.5 3 3.5 4

q(fm-1)

0.0

0.5

1.0

1.5

S xx
(q

)
(1b)+ (1b)

(1b+2b)+ (1b+2b)

(2b)+ (2b)

(1b)+ (2b) + h.c.

∆S ' 〈A |
∑
l<m

[
(j†l + j†m)jlm + h.c.

]
+
∑
l<m

j†lmjlm + · · · |A〉

=

∫
dx j(x) ρA(x; pn)

Enhancement ∆S driven by pn pairs
Scaling law for ∆S follows from scaling of ρA(x; pn)
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1b-2b interference effects: sum rules
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Baseline: the Fermi gas response
Van Orden and Donnelly (1981)

Excited states of the Fermi gas (up to 2ph states):

|ph〉 = a
†
pah |0〉 with p > kF ; h < kF

|p1p2h1h2〉 = a
†
p1
a
†
p2
ah2

ah1
|0〉 with p1, p2 > kF ; h1, h2 < kF

One-body operator j1b =
∑

kk′ jk
′

k a
†
k′ak and

〈ph | j1b |0〉 = j
p
h

; 〈p1p2h1h2 | j1b |0〉 = 0

Two-body operator j2b = 1/2
∑

k1k2k′
1k′

2
j
k′
1,k′

2
k1,k2

a
†
k′
1
a
†
k′
2
ak2

ak1
and

〈ph | j2b |0〉 =
∑
k

(
j
p,k
h,k
− jp,k

k,h

)
θ(kF − k) ; 〈p1p2h1h2 | j2b |0〉 = j

p1,p2
h1,h2

− jp1,p2
h2,h1

Fermi gas response:

R(ω) =
∑
ph

| 〈ph | j1b + j2b |0〉 |
2
δ(ω + E1ph)

+
∑

p1p2h1h2

| 〈p1p2h1h2 | j2b |0〉|
2
δ(ω + E2ph)

1ph contribution involves interference between 1b and 2b currents
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Van Orden and Donnelly (1981)
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Baseline: the Fermi gas response
Van Orden and Donnelly (1981)
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Baseline: the Fermi gas response
Van Orden and Donnelly (1981)
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Baseline: the Fermi gas response
Van Orden and Donnelly (1981)
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Baseline: the Fermi gas response
Van Orden and Donnelly (1981)

Excited states of the Fermi gas (up to 2ph states):

|ph〉 = a
†
pah |0〉 with p > kF ; h < kF

|p1p2h1h2〉 = a
†
p1
a
†
p2
ah2

ah1
|0〉 with p1, p2 > kF ; h1, h2 < kF

One-body operator j1b =
∑

kk′ jk
′

k a
†
k′ak and

〈ph | j1b |0〉 = j
p
h

; 〈p1p2h1h2 | j1b |0〉 = 0

Two-body operator j2b = 1/2
∑

k1k2k′
1k′

2
j
k′
1,k′

2
k1,k2

a
†
k′
1
a
†
k′
2
ak2

ak1
and

〈ph | j2b |0〉 =
∑
k

(
j
p,k
h,k
− jp,k

k,h

)
θ(kF − k) ; 〈p1p2h1h2 | j2b |0〉 = j

p1,p2
h1,h2

− jp1,p2
h2,h1

Fermi gas response:

R(ω) =
∑
ph

| 〈ph | j1b + j2b |0〉 |
2
δ(ω + E1ph)

+
∑

p1p2h1h2

| 〈p1p2h1h2 | j2b |0〉|
2
δ(ω + E2ph)

1ph contribution involves interference between 1b and 2b currents



QE e/ν
Scattering

Nuclear
interactions

Correlations

Nuclear
currents

e/ν
scattering

Interference

Summary

Summary

Enhancement of 1b response due to 2b currents driven
by strongly correlated pn pairs
Presence of these correlated pairs leads to important
interference effects between 1b and 2b currents:

1b currents can knock-out two nucleons from a
correlated ground state (with amplitude A1b)
This same final state can be reached by acting with 2b
currents on the correlated ground state (amplitude A2b)
Response ∝

∑
f | A1b(f) +A2b(f) |2
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