# SEU test analysis result for CBC3.1

Kirika Uchida 19.07.2019

1

# Backend

The cables between frontend and backend are 2m in length.



# Frontend

19/06/2019

Side view

View from downstream



View from upstream



## In the beamline











# VDDD currents & beam flux



# DAQ errors

- No pipeline logic error for total 3662 sec for 3 CBCs.
  - Upper limit for HL-LHC : 3.14 x 10<sup>-6</sup> / sec / chip.
- Some unexpected hit events.
  - Total 66 channels had unexpected hits in 7.3x10<sup>7</sup> events.
  - 0.04 hit error / event (in entire 120K CBCs). <- negligible.
- No stub error is observed in 7.3x10<sup>7</sup> events.
  - Upper limit of wrong stub data (in a chip) for HL-LHC : 1.8x10<sup>-5</sup> / event (in entire 120K CBCs) <- Totally negligible.</li>

# I2C registers

# I2C register check

• 81 of 8-bit register bit flips events were observed.

| CBC version | SEU rate / hour / chip in HL-LHC |
|-------------|----------------------------------|
| CBC3.0      | 0.031 +/-20%(stat)               |
| CBC3.1      | 0.026 +/-11%(stat)               |

- We are confident that the SEU are happening on write & reset strobe nodes. This makes analysis very complicated.
  - Systematic errors should be on the estimated rates from I2C configuration and the last written value
    - The rate depends how many bits are different from the default or the last written value
    - The flip rates seem to be different for the flip to the default and the last written value, and also 0 ->1 and 1->0
- Multiple bit flips are observed in a single 8-bit register, which was not the case for CBC3.0.
  - This is explained by the change made in CBC3.1, where reset/write lines for each bit is connected to each other within the 8-bit register.
- There were 3 burst of bit-flips in which all the control registers in page 1 flipped to the default values. Similar situations are observed with CBC3.0 with faulty frontend interface card.

## 8-bit I2C register SEU breakdown

#### The register configuration :

- Control registers were configured as the recommended values for the experiment. Two configurations with VCTH : 500 (0x1f4) & 700 (0x2bc)
- Half the offsets were set to 0x7f and the other half were 0x80. The last written values were set to 0x00, 0xff, 0xc1, 0x55, 0x41 during the test.

# of bits which could flip to the default value or the last written value per chip

(The numbers are listed for 2 VCTH settings, 500 & 700 respectively.)

| The last written<br>value | # of bit set to 0<br>The default : 1 | # of bit set to 1<br>The default : 0 | # of bit set to 0<br>The last written<br>value : 1 | # of bit set to 1<br>The last written<br>value : 0 | # of bit set to 0<br>The default &<br>the last written<br>value : 1 | # of bit set to 1<br>The default &<br>the last written<br>value : 1 |
|---------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| 0x00                      | 153 / 152                            | 945 / 945                            | 0/0                                                | 1414 / 1415                                        | 153 / 152                                                           | 1414 / 1415                                                         |
| Oxff                      | 153 / 152                            | 945 / 945                            | 1242 / 1241                                        | 0/0                                                | 1242 / 1241                                                         | 945 / 945                                                           |
| 0x41                      | 153 / 152                            | 945 / 945                            | - / 308                                            | - / 1059                                           | - / 457                                                             | - / 1327                                                            |

### The result

- Total 81 of 8-bit register bit flips
- 72 registers had bit-flips to the value consistent with the last written value.
  - 43 multiple bit flips happened only when the bits are flipped to the last written values. Only 1 event had 1->0 transition 0xff -> 0x00. Other bit flips are all 0->1.
  - 29 single bit flips consistent with the last written value, 0x7f->0xff.

#### • 31 registers had bit-flips to the values consistent with the default values.

- Bit-flips of 5 registers are not consistent with the last written value and all 1->0.
- 24 bit-flips consistent with the last written value are all 0x7f->0xff, other 2 are 0x7f->0x00. (All of these are offsets and the default values are 0x80.)

19/06/2019



# The flip rate of 0->1 and 1->0

## # of bits which could flip to the default value or the last written value per chip (The numbers are listed for 2 VCTH settings, 500 & 700 respectively. )

| The last written<br>value | # of bit set to 0<br>The default : 1 | # of bit set to 1<br>The default : 0 | # of bit set to 0<br>The last written<br>value : 1 | # of bit set to 1<br>The last written<br>value : 0 | # of bit set to 0<br>The default &<br>the last written<br>value : 1 | # of bit set to 1<br>The default &<br>the last written<br>value : 1 |
|---------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| 0x00                      | 153 / 152                            | 945 / 945                            | 0/0                                                | 1414 / 1415                                        | 153 / 152                                                           | 1414 / 1415                                                         |
| Oxff                      | 153 / 152                            | 945 / 945                            | 1242 / 1241                                        | 0/0                                                | 1242 / 1241                                                         | 945 / 945                                                           |
| 0x41                      | 153 / 152                            | 945 / 945                            | - / 308                                            | - / 1059                                           | - / 457                                                             | - / 1327                                                            |

- The bit-flip rate to the default value can be extracted with the last written value 0xff or 0x00
  - 0->1 bit-flip to the default values in the data were not observed. Upper limit is set.
- Looking at other data,
  - 0->1 bit-flip rate is relatively large. Most probably from the bit-flips to the last written value.
  - 1->0 bit-flips rate is consistent with the flip to the default values. The contribution from the flips to the last written value should be small.

## Setting the last written value to 0x00 might help reducing the bit-flips.



# Summary

- SEU rate on I2C registers on CBC3.1 seems to be similar to CBC3.0.
- Increased statistics supports that the mechanism of the SEU on I2C register is on the write and reset node.
- The SEU rate would depends on the last written value and register configuration.
- The data for CBC3.1 indicates that setting the last written value 0x00 gives order of magnitude lower than setting to 0xff.
- Overall 8-bit register bit-flip rate per chip at HL-LHC would be ~ 0.5 with the flux = 3x10<sup>6</sup> cm<sup>-1</sup>s<sup>-1</sup> (only 15 % of the registers are control registers)