CBC3 Lot2-3 wafer testing results

2020-02-25 Johan Borg, Kirika Uchida and Geoff Hall Imperial College London with thanks to:

Duncan Parker

CBC3.x production overview

- CBC3.0 engineering run delivered December 2016
- CBC3.1 engineering run ("Lot 1") September 2018 exhibited pattern of low yields
- GF tuned process to improve yields.
- Lot 2 and 3 (24 wafers each) delivered 2nd and 26th of September 2019.
- Lot 2 shows clear improvement in yield
- Lot 3 exhibits lower yield for particular tests

Yield histograms

- Lot 1: 82.5%
- Lot 2: 89.7%
- Lot 3: 82.1%
- Large yield spread for Lot 3.

Failure mode definitions

Gain

The gain of one or more channels deviates substantially from the norm

Pipeline bit

A stuck bit in the pipeline memory, affecting one channel once every 512BX

Pipeline addr

The pipeline address transmitted in the L1 data packet is corrupted. Doesn't affect the data.

Other

Any other failure: mostly interface logic, I2C register or stub decoding errors

Lot1,2,3 failure modes

Channel gain error

Pipeline memory bit error

Pipeline memory bit error

Pipeline address error

All other errors

Pipeline address error

2

1

Other

Pipeline bit

Note the sharp circular pattern of errors on lot 3

Pipeline address error

Pipeline addr

3

Lot 3 analysis

- Significantly more Pipeline address errors
 - Harmless during normal operation
 - Temperature dependence observed for wire-bonded Lot1 chips
- Some pipeline data memory errors observed at reduced supply voltage (see next slides)

- No significant impact on performance expected unless fraction approaches detector occupancy
- Low temperature wafer tests implemented to study the impact on the yield in more detail
- To date one Lot 2 and one Lot 3 wafers have been re-tested over temperature and supply voltage, but the anomalous performance of Lot 3 is not yet understood

Lot 2 pipeline bit errors at -25

Lot 2 chips exhibits a small number of errors at low supply voltage

Lot 3 pipeline bit error at -25

Lot 3 is clearly different, reduced yield at nominal supply voltage.

Analysis of process control monitoring data from Fab

- Only data from 15 sites received
 - 5 measurements from 3 Lot 1 wafers
 - No lot 2 measurements
 - 5-15 (not everything was measured at every site) from a Lot 3 wafer
- All parameters within specification
- Worst NMOS and PMOS VT(sat) a bit worse on Lot3, but difference is not huge
- Doubtful whether any conclusions can be drawn from this limited dataset
- Is this all we can get from the fab?

Other activities

- Issues with probing seems to be more or less resolved. Currently blamed on contamination from silicone oil vapor from coolant system.
- Heat transfer fluid changed to ethylene glycol+water (rather viscous at -25, but works OK).
- 2 Wafers (one from lot 2 and one from lot 3) has been sent for dicing, to be returned on blue-tape to allow us to pick selected dies to test soldered.
- New probe cards ordered
- Design of new chuck for probe station completed, manufacturing pending.

PRR: preliminary 25th of March

Agenda:

- Context
 - CMS-OT electronic system
 - Contract framework with GF
- Status
 - Background
 - ASIC description, specifications
 - Test campaigns and results
 - System level verification framework and results
 - System tests and Beam tests
- Plans
 - Quality control, database, traceability, storage, transport, logistics, documentation
 - Production and test plans, resources, schedule