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1 Introduction

The silicon strip tracker at the CMS experiment [1] uses the APV [2], a multiplexing readout chip
with an analogue storage pipeline. Plans for an upgraded “High Luminosity LHC” (HL-LHC) [3]
mean that development of a new readout ASIC is required. A first prototype of this chip, the CMS
Binary Chip (CBC) has been produced. This article describes initial tests of the CBC over its full
operating temperature range.

Operation at HL-LHC implies a greatly increased flux of particles through the tracking detec-
tors with respect to the LHC. In order to keep the occupancy on each readout channel low enough
for effective track reconstruction the granularity of the detector and hence the number of readout
channels will have to be increased. However the amount of material, especially high-Z material,
must be kept constant or preferably be reduced. This implies that the tracker power consumption
must stay constant or reduce, since the cables needed to supply power and the cooling pipes needed
to remove the resulting heat are a significant component of the tracker dead-material. Reducing the
power consumption per channel implies moving to a smaller feature size IC technology than the
250nm used for the APV. It is anticipated that the eventual design for the CBC will include cir-
cuitry to generate information for the trigger system. However, the first version does not include
any trigger functionality.

To reduce the effects of radiation damage a CMS tracker for HL-LHC is likely to be run
at a lower temperature than the current tracker. Hence the performance of the CBC needs to be
characterized over a wide temperature range.

1.1 CMS Binary Chip (CBC)

The CBC is described elsewhere [4], so only brief details are given here. The CBC is manufactured
in a 130nm IBM CMOS process. The APV has an analogue storage pipeline and readout. However
the move to digital rather than analogue fibre optic links means that this approach is not possible
for the CBC and a binary, non-sparsified readout has been chosen instead. This is similar to the
approach taken by the VFAT [5] readout ASIC.
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Figure 1. Block diagram of CBC front-end.

Figure 2. Outline of CBC pre-amplifier.

The analogue front-end of each channel is illustrated in figure 1 (taken from [6]). The front
end has a fast impulse response function (approximately 20ns peaking time) to cope with high oc-
cupancy and to reduce the time-walk generated in the fixed threshold discriminator. It can tolerate
a leakage current of up to 1 µA and so it can be DC coupled to the sensor. The front end can be
switched between sensor polarities. Figure 2 shows an outline of the pre-amplifier (taken from [4]).

The supply voltage of the CBC is approximately 1.2V, which precludes the use of LVDS, so
the SLVS [7] standard is used for fast I/O signals. As with the APV, setup and control is done via
an I2C interface.
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2 Measurements

The CBC has a binary readout, but by repeatedly triggering and recording the fraction of hits whilst
scanning the comparator threshold it is possible to build up a picture of analogue behaviour. By
using an environmental chamber variation of the parameters that characterize the circuit response
can be evaluated. The chamber used is capable of operation between −70◦C and +180◦C but for
these tests a range of −40◦C – +40◦C was used. A voltage step of adjustable amplitude applied
across a 1.5pF±10% capacitor was used to inject charge into a channel. The timing of the pulse
with respect to the trigger could be varied either by changing the pipeline latency inside the CBC
or the pulse generator delay between the trigger signal and the pulse output. A single CBC was
used to take the measurements presented here.

2.1 Measuring “turn-on” (S-Curves)

In general, plotting the fraction of hits (the fraction of triggers that return a “1” from a particular
channel) as a function of the threshold voltage gives a sigmoid (an “S-Curve”). By fitting a function
to the curve the mid-point of the “turn-on” can be measured and the noise estimated from the width
of the turn-on. The error function (erf) or complementary error function (erfc), as appropriate, is
fitted. Figure 3 shows S-curves for a range of different injected charges. Due to issues with the
CBC internal threshold voltage generator an external voltage source was used. In all cases the
minimum hysteresis setting was used.

2.2 Rise time

The voltage as a function of time at the output of a CBC post-amplifier can be investigated by
varying the time delay between the trigger input to the pulse generator that produces the charge
injection signal. At each value of the pulse delay an S-curve is taken and the mid-point of the turn-
on measured. This gives a measure of the voltage at the output of the post-amplifier convoluted
with the time response and voltage offset of the comparator. In essence the CBC is being used like
a “sampling oscilloscope” using the S-Curve mid-point as the ADC. Figure 4 shows the S-Curve
mid-point as a function of delay for a single pulse-height. Curves are shown for two different values
of bias current through the front-end transistor. The curves correspond to a nominal current of 4uA
through the preamp cascode branch and current of 10uA and 90uA through the input branch. The
10%–90% rise time is 25± 3ns, 28± 3ns for 10uA, 90uA respectively through the preamplifier
input branch.

2.3 Linearity

Figure 5 shows the S-Curve mid-point as a function of delay for a range of different pulse heights.
Figure 6 shows the peak-pedestal shift in the S-Curve mid-point as a function of injected charge.
The delay (in 30ns units) was set to give maximum response. For electrons (negative pulse) at
T=273K the gain was measured as 40±0.5 (statistical)±5 (systematic) mV/fC. This indicates that
when the pulse is correctly timed the relationship between pulse size and comparator threshold is
sufficient for operation as a binary strip-tracker readout.
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Figure 3. Occupancy as function of threshold voltage (“S-Curve”) for different pulse-heights, together with
fit to complementary error function for each S-Curve.

2.4 Temperature variation of pedestal and noise

To characterize the variation with temperature of the post-amp pedestal position S-Curves were
taken between −40◦C – +40◦C.

Figure 7 shows the S-Curve mid-position and the width of the S-Curve for an unconnected
input channel as a function of temperature. For this unconnected channel the width of the S-Curve,
which is related to the RMS fluctuation on the post-amplifier output, is 2.9±0.2mV and does not
change significantly with temperature. This corresponds to an equivalent noise charge of 450±75
electrons. The S-Curve mid-point, for a fixed set of I2C configuration values, changes by 1.4mV/K
over the temperature range −40◦C – +40◦C. This is consistent with simulation results [8].

3 Conclusion

Basic CBC functionality was tested over the temperature range needed for a CMS tracker at the HL-
LHC. No adverse changes in performance were observed. However, the operating point changes
slightly with temperature. Further work to characterize the variation with temperature is needed,
including taking measurements from a sample of devices, rather than the single device characte-
rized here.
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Figure 4. S-Curve mid-point as a function of delay for two different input transistor bias currents, 5ns steps.
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Figure 5. S-Curve mid-point as a function of delay for different pulse-heights.
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Figure 6. Shift in S-Curve mid-point for different pulse-heights.
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Figure 7. Shift in S-Curve mid-point and width with temperature.
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