# Characterization of the CBC2 readout ASIC for the CMS Strip-Tracker HL upgrade

[D. Braga], G. Hall, M. Pesaresi, M. Raymond (Imperial College)D. Braga, L. Jones, P. Murray, M. Prydderch (STFC RAL)

TWEPP 2013, Perugia 23-27 September 2013



Imperial College London



Science & Technology Facilities Council





# Outline

- Tracker upgrade & detector module
- •The CBC (CMS Binary Chip) v.1 & 2

### •CBC2: architecture & performance

Front end Coincidence logic Power elements

### Dual-CBC2 module

### •Future plans and conclusions

# Phase II upgrade of the CMS Strip Tracker



- Baseline design: Barrel+5Endcaps
- Contribute to L1 trigger to contain rate to 100 kHz
- Possible objective of L1 readout up to 1 MHz/10-20µs latency

# Basic trigger module concept



High- $P_T$  tracks (stubs) can be identified if cluster centre in top layer lies within a search window in R- $\Phi$  (rows)

# **2S PT module with CBC2**

- Commercial assembly
- 2x8 CBC bump bonded for commercial assembly
   → designed for rapid assembly on large scale
- Only one flavour (except for sensors separation)





### First version: CBC main features

- IBM 130nm CMOS process
- binary, unsparsified architecture
  - retains chip and system simplicity
  - but no pulse height data
- designed for  $\sim$ 2.5 5cm µstrips <  $\sim$  10 pF
- 128 channels, 50 μm pitch wire-bond
  - either polarity input signal
- <u>not contributing</u> to L1 trigger
- powering test features:
  - 2.5 -> 1.2 DC-DC converter
  - LDO regulator (1.2 -> 1.1) feeds analogue FE
- fast (SLVS) and slow (I2C) control interfaces



Low drop out regulator

# **CBC(1)** Test Results

e.g. for 5pF input capacitance:

noise: ~ 800 e<sub>RMS</sub>

total power:  $< 300 \mu$ W/channel

see: "M.Raymond et al 2012 JINST 7 C01033" "W.Ferguson et al 2012 JINST 7 C08006"



APV plane **CBC** sensor





# **CBC** $\rightarrow$ **CBC2**: New Features

### • 250µm pitch C4 layout

for commercially assembled module back edge wire-bond pads for wafer probe

- 254 channels for 127 + 127 strips
- correlation logic for stub formation between top & bottom strips vetoes wide clusters
- Test pulse & other minor circuit improvements
- Improved DC-DC (CERN)
- received Jan 2013 fully functional

# **CBC2 C4 wafers**

(shared with RAL LPD ASIC)

### >97% yield

So far 2 out of 8 wafers probed (220 chips)





CBC2

reticle



# **CBC2 testing activities**

### Wire-bond CBC2

- To develop wafer probe procedures
- Next: x-rays TID testing

### 2xCBC2 hybrid

- Hybrid characterization and chip integration
- Bump-bonded ASICs
- Inter-chip links & logic

### 2xCBC2 mini-module + sensor

- Sr-90 source
- Cosmics
- Next: test beam → Pt stubs performance

see Georges' talk: "Hybrid circuit prototypes for the CMS Tracker upgrade front-end electronics"









#### front end, pipeline, L1 triggered readout, biasing

~ same as prototype (some bug fixes) twice as many channels

#### new blocks associated with Pt stub generation

channel mask: block problem channels (not from L1 pipeline)

cluster width discrimination: exclude wide clusters > 3

offset correction and correlation: correct for phi offset across module and correlate between layers stub shift register: test feature - shift out result of correlation operation at 40 MHz

trigger O/P: in normal operation 1 bit per BX indicates presence of high Pt stub

#### test pulse

charge injection to all channels (8 groups of ~32), programmable timing and amplitude

### **S-curves and tuning**



CBC2 channel no.

### **Gain measurements**

sweep global comparator threshold VCTH to get s-curves for range of test pulse amplitudes

plot s-curve mid-points vs. TP amp

rough calculation in 1÷2fC region (assumes TP value of 12 / fC)

(168 - 150) x 2.5 mV<sup>\*</sup> = 45 mV/fC



TWFPP13

Davide Braga



### **Post-amp feedback resistor control**



# **Stub finding logic**

#### cluster width discrimination (CWD) logic

exclude clusters with hits in >3 neighbouring channels wide clusters not consistent with high pT track

#### offset correction & correlation logic

for a cluster in bottom layer, look for correlating cluster occurring in window in top layer

window width controls pT cut
stub found if cluster in bottom layer corresponds to
cluster within window in top layer
window width programmable up to ± 8 channels

offset defines lateral displacement of window across chip programmable up to ± 3 channels







# **Stub finding Logic**

Individual mask for noisy channels →254b from I2C reg. (can be also used to inhibit coincidence logic)

Need to be able to inhibit stub shift register operation →1b EN from I2C reg.

**254-OR** of channel outputs to signal any activity on chip

Stubs shift register

127-OR of stubs to signal stub activity and control the stubs SR readout

 $(\rightarrow CBC2 \text{ can be used as})$ 

@40MHz

### **Results with test pulse**





→ Test pulse together with individually-programmable channel masks can be used to fully exercise the coincidence logic

TWEPP13

# Logic tests using beta source





CBC2 trigger output data frame width CBC2 trigger output data frame width 1 1.00 V 2 2.00 V 100mV 800ns 1.25C5/3 1.25C3/3 1.25C5/3 1.25C3/3 1.25C5/3 1.25C7/3 1.25C7/3











### Logic tests using cosmics

NB: very low rate (<<1Hz) even with maximum coincidence window in upper sensor



| Tek PreVu                                                                                                                | M 80                      | 00ns                                                                                                        |                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                                          |                           | CBC2 data frame                                                                                             |                                                                                                                 |
| CBC2 trigger output                                                                                                      |                           |                                                                                                             |                                                                                                                 |
| scintillator signal                                                                                                      |                           |                                                                                                             |                                                                                                                 |
| Zoom Factor: 8 X Zoom Position: 3.68µs                                                                                   |                           |                                                                                                             |                                                                                                                 |
| cosmic example                                                                                                           | hammer May                |                                                                                                             |                                                                                                                 |
| <b>CBC2 trigger output</b> generated by<br>2 strip cluster in one plane<br>correlating with 1 strip cluster in the other |                           |                                                                                                             |                                                                                                                 |
|                                                                                                                          |                           |                                                                                                             |                                                                                                                 |
| Derechtlichen landerlichen unter eine Andreite der eine Antonisten eine geheiten der Antonisten eine Antonisten<br>1     | strip                     | alagud <b>ide</b> ra dani birahanga dapise aji                                                              | งหาวันไทยจะสำนักของรู้แล้วจังสองรู้จะสามารถ<br>                                                                 |
|                                                                                                                          | uster 2 strip<br>cluster  | การก่องชีตารสีรัฐบางกับกิจารรับประชัยการจะการจะการจะกา                                                      | terre and the second |
| => correlation logic working as expected                                                                                 |                           | والمراجع | والمعارفة والمعارية والمعارفة والمعارفة والمعارفة والمعارفة والمعارفة والمعارفة والمعارفة والمعارفة والمعارفة   |
| for more examples see:                                                                                                   |                           |                                                                                                             |                                                                                                                 |
| https://indico.cern.ch/getFile.py/access?co                                                                              | ontribld=4&sessionId=1&r  | esId=2&materialId=slides&                                                                                   | <u>confld=265897</u>                                                                                            |
|                                                                                                                          |                           |                                                                                                             |                                                                                                                 |
| (1) 1.00 V (2) 2.00 V                                                                                                    | $(4)$ 100mV $\Omega$ Z 10 | 0ns 1.25GS/s 10k points                                                                                     | <b>2</b> 1.44 V                                                                                                 |

### **Power elements**

#### Low-dropout linear regulator

- provides clean, regulated rail to analog FE (uses CERN bandgap) ~ 1.2 Vin, 1.1 Vout
- load currents 40, 60, 80 mA
- dropouts ~ 30, 55, 70 mV (approx.)

DC shift due to series resistance (measured on wire-bonded chip)

#### LDO out vs. band-gap



#### **DC-DC:**

- CERN on-chip switched capacitor converter
- 2.5V → ~1.2V Can be used to power the CBC2
- Improved version wrt CBC1
- Working but not yet characterized



#### CBC1



- analogue front end in 130nm
- wirebonded
- binary logic
- L1 triggered readout only, nonsparsified

#### CBC2

- C4 bump-bonded
- full hit correlation logic
- L1 triggered non-sparsified readout, fast trigger OR

#### CBC3

- full readout architecture defined
- final data format
- additional correlation logic

#### CBC4

- optimisation
- final version

# **Rough road map**

#### 2S-Pt prototype module studies

#### 2S-Pt final module studies

#### start production

# CBC3 – the "final prototype"

#### • final choices for front end

Optimized for 5cm strips (possibly longer), AC coupled, n-on-p

#### stub data definition

1/2 strip cluster resolution

Increased max acceptance width from 3 to 4strip clusters 8b address (for ½ strip resolution) of cluster in bottom layer 5b for stub bend information (rough Pt)

#### stub data formatting & transmission

13b/stub, up to 3 stubs/BX => 39 bits +1 bit unsparsified L1 triggered readout data => 40 bits / 25 nsec

e.g. 10 lines at 160 Mbps (per chip) Designed for final trigger rate & latency Priority encoding of Pt stubs (if desired)

#### other useful features

...

e.g. slow ADC to monitor bias levels





# **Summary & Conclusions**

Two successful full-size prototypes of new Outer

#### Tracker ASIC

- ✓ CBC2 working to specs
- ✓ Some front-end improvements over CBC1
- ✓ Stub finding logic functioning
- ✓ Power features (LDO & DC-DC) operational

#### First prototype version of 2S module in hand

- ✓ First demonstration of bump-bonded ASIC for strip readout
- ✓ Ready to be distributed to collaborating institutes
- First beam test foreseen for December 2013
   followed by ionizing radiation and SEU studies



