CBC3 design review

RAL – June 2016

analogue front end LDO

history(1)

CBC(1)

128 channels, wirebond, no triggering features, originally expected to be used for 2.5cm strips wafers received January 2010 worked ok, a few issues VPAFB needed external decoupling to achieve CM stability done differently for CBC2 VCTH affected by comparator with external hysteresis CBC2 comparator uses internal hysteresis bandgap output susceptible to VDDD noise big RC filter added for CBC2

CBC2

254 channels, bump-bond simple triggering features channel mask, CWD, offset correction and correlation single output indicates presence of positive correlation single-ended external signals (nothing faster than 40 MHz) wafers received January 2013

Outer tracker region: p_{T} modules

5

2S

2 Strip sensor layers
 for r > 60 cm
2 (hybrids) x 2 (layers) x 1016 strips
 5cm long, 90 um pitch
 coarse z information

5 cm

24

Ζ

Pixel + Strip sensors for r > 20 cm 2 (hybrids) x 960 strips 2.5 cm long, 100 um pitch 2 (hybrids) x 16 x 960 pixels 1.5 mm x 100 um accurate z information

1 module type, $\sim 10 \times 10 \text{ cm}^2$ active sensor area for whole of r > 60 cm region (endcaps too)

self-contained single, testable object; only needs power (~ 12 V) and optical connection to function

CBC2 stub-finding logic

history(2)

CBC2 worked well enough to achieve major objectives

development of challenging hybrid technologies proof of pT module concept

main issues

CM effect when low threshold and many channels firing

evidence points to supply current fluctuations when <u>many</u> channels firing coupling to postamp feedback FET biasing

a new method for biasing the feedback FET has been implemented for CBC3 comparator has been modified to draw same current - fired or not

so-called "shadow effect"

when signal injected into <u>many</u> channels, other channels fire, but ~50 nsec later traced to coupling through preamp cascode bias node

can be solved by regulated cascode circuit for the preamp (other benefits) leakage current in pipeline at low ionizing doses

so-called RINCE effect for normal layout NMOS devices

enclosed NMOS devices now implemented

SEU immunitity for I2C registers could be better

now using Whitaker cells for I2C registers

CBC3 specifications

analogue front end

n-on-p sensor polarity - signal current flows out of chip - electrons mode only AC coupled - no specified leakage current tolerance strip length 5cm (possibly up to 8cm)

=> may need to run with high currents in input FET

pulse shaping

peaking time <20 nsec

return to baseline within 50 nsec for signals in normal range (1 - 5 mips) gain: ~50 mV / fC (mip signal for 200 um thick sensor 2.5 fC before irradiation) overload recovery

individual channel (and neighbours) should respond to normal size signal < 2.5 usec following hip signal up to 4 pC

```
noise target < 1000e
```

power

aim for overall analogue power of ~ 350 uW /channel

overall chip power ~ 450 uW / channel

CBC3 specifications

comparator

(individual channel offset trim implemented at postamp output) 10-bit resolution (~1mV) for comparator global threshold VCTH

timewalk

originally specified for 300um sensors

<16 nsec time difference between comp. output edges for input signals of 1.25 (0.83) fC and 10 (6.7) fC for threshold of 1 (0.67) fC

(numbers in red adjusted for 200 um sensor)

CBC3: other blocks functionalities

hit detect

samples output from comparator using programmable phase 40 MHz clock from DLL (1 nsec resolution)

needs to be sensitive to variety of input conditions

single pulse at amp. O/P. Comparator O/P fires. Hit detect produces output at next 40 MHz clock edge

Comp O/P stays high for 2 clock edges.

=> hit detect output stays high

for two clock cycles

10

single pulse only just exceeds threshold. Comp O/P rises and falls between clock edges, but hit detect still "detects" and produces an output

top & bottom channel swap

modules mounted above and below support structure will be flipped (probably)

=> seed and window layers will also be flipped unless do something about it

(expect lower efficiency when seeding from outer layer because of scattering and conversions -> more hits in outer layer which don't correspond to valid stub)

simplest thing is to swap channels on chip

Front

End

254 Amrifie

 \uparrow

Channels

254

seed layer nearer interaction point

now window layer nearer interaction point

back to seed layer nearer interaction point 11

Gathering Logic

Stub

3

4

1

2

pipe-

line

Ø

Correction

Offset 2

Stub Address

relation

imination **Cluster Width**

Disg

Nearest Neighbour Signals

Channel

Bottom Swap

Q

Top

DLL

Mask

Channel

Comparato

rs

Detect

Ξ

cluster width discrimination

CBC2: clusters \leq **3** strips accepted

2 strip cluster assigned to one of the strips involved

CBC3: clusters ≤ **4** strips accepted

2 & 4 strip clusters assigned to midposition

- => 1/2 strip cluster position resolution
- => 8-bit cluster address

cluster width discrimination - logical representation

offset correction and correlation

CBC3 stub generated if cluster in seed layer corresponds to cluster found within window in other layer

window width programmable up to \pm 7 strips (\pm 14 half strips)

window can be offset, 4 domains / chip (=> 32 across module)

offset programmable up to ± 3 strips (± 6 half strips)

position of cluster in window indicates direction of stub -> this is the **bend** information

5 bits bend info locates cluster to individual ½ strip position if widest window selected

nearest neighbour signals

need to transfer signals between chips to ensure continuity across module

minimum no. to transfer achieved by transferring before CWD and duplicating logic on each chip

use this picture to determine how many interchip signals there will be

interchip signal numbers

upper window layer

CWD logic for cluster on strip 118 requires inputs from strips 117 and 116 CWD logic for cluster on strip $10\frac{1}{2}$ requires inputs from strips 11, 12, & 13

so hit detect outputs of 13 strips must be passed from right to left 1,2,3,4,5,6,7,8,9,10,11,12,13 and 12 from left to right 116,117,118,119,120,121,122,123,124,125,126,127

lower seed layer

seed on 127¹/₂ in left chip on seed layer requires 3 strips from right chip (1,2 & 3) seed on 1 on right chip in seed layer requires 2 strips from left to right (126 & 127)

so total interchip signals requires 25 + 5 = 30 signals

skip to slide 27

now look at interchip signal issue from viewpoint of CBC channel numbers (1 ... 254)

channels 1,3,5,7,...249,251,253 read out 1 layer channels 2,4,6,8,...248,250,252,254 read out the other

explore what happens when flip module on other side of support structure want seed layer to still be the layer nearest the beam, so swap channels in CBC

1<->2, 3<->4, 5<->6, 7<->8, 249<->250, 251<->252, 253<->254

for CBC2 (2CBC2 and 8CBC2flex hybrids) odd channels (1,3,5,...) correspond to seed layer nearest to beam, and even channels (2,4,6,8,...) correspond to window layer

in the following pictures sensor channels are arbitrarily numbered 1 to 1016

reminder of CBC channel numbering

CBC channels number as if viewed through the CBC back surface, so this is the pad layout that would be visible on the hybrid

red channels route to the top sensor layer

blue channels are via'd through the hybrid to the bottom sensor layer

CBC channel/sensor layer A numbering convention before module flip

CBC channel/sensor layer B numbering convention before module flip

SOUTH

back to picture before module flip

after module flip

NORTH CBC chips now underneath sensor layer B hybrid, so actually not really 1 visible in this view 2 3 WEST EAST <u>508</u> 509 508 509 5 6

1016

1016

8

SOUTH

sensor layer A

1016

1016

8

after module flip

NORTH

EAST hybrid on module

		inouuic		N	
before module flip chips facing away from beam		CHIP 5 CHIP 4			
window	523 522 521 520 519 518	517 516 515 514 509 513 512 511 510 509	508 507 506 505 504 503 502 501 500 499	498 497 496 495 494 493 492 491 sensor strip #	
·	224 226 228 230 232 234	236 238 240 242 244 246 248 250 252 254	2 4 6 8 10 12 14 16 18 20	22 24 26 28 30 32 34 36 CBC channel #	
layer					
			n	nax. programmable window +/- offset (½ strip res'n)	
seed	222 225 227 220 221 222	225 227 220 241 242 245 247 240 251 252	1 2 5 7 0 11 12 15 17 10	21 22 25 27 20 21 22 25 CPC channel #	
layer	523 522 521 520 519 518	517 516 515 514 509 513 512 511 510 509	508 507 506 505 504 503 502 501 500 499	21 23 23 21 29 31 33 33 CBC channel # 498 497 496 495 494 493 492 491 sensor strin #	
,	323 322 321 320 313 310	517 516 515 514 505 515 512 511 510 505	300 307 300 303 304 303 302 301 300 433		
NORTH	flip hybrid, and sv	vap channels (1<->2, 3<->4, 5< CHIP 4	->6, 249<->250, 251<->252, CHIP 5	253<->254) SOUTH	
	after module flip				
	chips facing beam			55023	
window					
window	497 498 495 496 497 498	499 500 501 502 503 504 505 506 507 508 10 17 15 12 11 0 7 5 2 1	509 510 511 512 513 514 515 516 517 518	519 520 521 522 523 524 525 526	
layer	31 29 27 23 23 21	19 17 15 15 11 9 7 5 5 1	255 251 249 247 245 245 241 259 257 255	232 231 229 227 223 223 221 219	
seed					
lavor	32 30 28 26 24 22	20 18 16 14 12 10 8 6 4 2	254 252 250 248 246 244 242 240 238 236	234 232 230 228 226 224 222 220	
ayei	497 498 495 496 497 498	499 500 501 502 503 504 505 506 507 508	509 510 511 512 513 514 515 516 517 518	519 520 521 522 523 524 525 526	

WEST hybrid on module

				ž	
before module flip		CHIP 5 CHIP 4		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
chips facing away from beam					
window layer	523 522 521 520 519 518 32 30 28 26 24 22	517 516 515 514 509 513 512 511 510 509 20 18 16 14 12 10 8 6 4 2	508 507 506 505 504 503 502 501 500 499 254 252 250 248 246 244 242 240 238 236	498 497 496 495 494 493 492 491 sensor strip # 234 232 230 228 226 224 222 220 CBC channel #	
			r	nax. programmable window +/- offset (½ strip res'n)	
seed				½ strip res'n seed	
laver	31 29 27 25 23 21	19 17 15 13 11 9 7 5 3 1 517 510 514 500 510 514 500	253 251 249 247 245 243 241 239 237 235	233 231 229 227 225 223 221 219 CBC channel #	
layer	523 522 521 520 519 518	517 516 515 514 509 513 512 511 510 509	508 507 506 505 504 503 502 501 500 499	498 497 496 495 494 493 492 491 sensor strip #	
ORTH	flip hybrid, and sv	vap channels (1<->2, 3<->4, 5<	->6, 249<->250, 251<->252,	253<->254) o J	
Z	after module flir	CHIP 4	CHIP 5		
				22.22	
	chips facing beam				
window	497 498 495 496 497 498	499 500 501 502 503 504 505 506 507 508	509 510 511 512 513 514 515 516 517 518	519 520 521 522 523 524 525 526	
laver	223 225 227 229 231 233	235 237 239 241 243 245 247 249 251 253	1 3 5 7 9 11 13 15 17 19	21 23 25 27 29 31 33 35	
,					
seed					
lavor	224 226 228 230 232 234	236 238 240 242 244 246 248 250 252 254	2 4 6 8 10 12 14 16 18 20	22 24 26 28 30 32 34 36	
layel	497 498 495 496 497 498	499 500 501 502 503 504 505 506 507 508	509 510 511 512 513 514 515 516 517 518	519 520 521 522 523 524 525 526	

stub gathering logic + bend lookup formatting

up to 3 stub addresses (8 bits) + associated bend info (5 bits) passed to **bend lookup formatting** block every BX

no priority logic - 1^{st} 3 stubs only

more than 3 -> stubs overflow bit set in O/P data packet

13 bits / stub => 39 bits total

5 bits bend info reduced to 4 bits using programmable lookup table

(mapping will depend on module location in tracker)

pipeline + buffer & PISO shift register

512 deep pipeline => up to 12.8 usec latency

32 deep buffer for triggered events awaiting readout

=> low inefficiency for trigger rate up to 1MHz

triggers rejected to avoid buffer overflow

data packet assembly & transmission

6 differential outputs running at 320 Mbps output data block

SLVS<1> SLVS<2> SLVS<3> SLVS<4> SLVS<5> SLVS<6>

25 ns	S1<0>	S2<0>	S3<0>	B1<0>	B3<0>	R
	S1<1>	S2<1>	S3<1>	B1<1>	B3<1>	R
	S1<2>	S2<2>	S3<2>	B1<2>	B3<2>	R
	S1<3>	S2<3>	S3<3>	B1<3>	B3<3>	R
	S1<4>	S2<4>	S3<4>	B2<0>	SoF	R
	S1<5>	S2<5>	S3<5>	B2<1>	OR254	R
	S1<6>	S2<6>	S3<6>	B2<2>	Error	R
	S1<7>	S2<7>	S3<7>	B2<3>	Sync	R

R = L1 triggered readout data time flow **bottom** to **top** (e.g. **S1<7> output first**)

S = Cluster address, B = Bend data

SoF = Stub Overflow (>3 Stubs)

OR254 = any unmasked channel over threshold

Error = latency OR FIFO overflow error

Sync = For synchronisation with CIC

R = Triggered readout data (remains unsparsified)

data packet assembly & transmission

trigger rate capability to 1 MHz

9 bits pipe

address

2 start bits

2 error bits

data frame comprises

2 start bits
2 error bits (latency & FIFO overflow)
9 bits pipe address (triggered pipeline location)
9 bits L1 counter

reset by fast reset OR dedicated reset
e.g. every orbit

254 bits strip readout data

channel order 254, 253, ... 3, 2, 1

9 bits L1

counter

fast and slow control

fast control

320 Mbps differential stream

40 MHz clock generated from fixed pattern in fast control data

commands are: fast reset trigger test pulse trigger L1 counter reset

slow control

I2C @ 1 MHz

CBC3 miscellaneous

clocks

320 MHz differential

test pulse feature

same as CBC2

SEU immunity

I2C register immunity to be improved by using Whitaker cells for results see <u>http://www.hep.ph.ic.ac.uk/~dmray/CBC_documentation/Phase_2_SEU_Kirika_Nov_14.pdf</u>

ionizing radiation tolerance

pipeline cell design to be modified to eliminate leakage effect at low doses for results see <u>http://www.hep.ph.ic.ac.uk/~dmray/CBC_documentation/Phase_2_TID_Davide_Nov_14.pdf</u>

power

originally $1.2 V \pm 10\%$ (but more likely to be 1.25 ± 0.05 in the final system) on-chip LDO to generate analogue power rail on-chip DC-DC conversion abandoned target power consumption for 5 cm strips 450 uW/channel

pads

250 um pitch, same as CBC2 wire-bondable column for probing and other tests

CBC3 front end

CBC3 front end

unless otherwise stated, these are the values used for the simulations here

increase in bias FET CBC2 vs. CBC3 allows higher currents 40/10 1.2 V digital 1.0 V analogue Ipaos1 → 10/1 10/1 1/0.25 1/0.25 4/1 10/0.5 0.2/ 0.48/ ← IPRE2 0.12 60/1 10/1 0.12 IPRE1 > 1/0.25 25/0.5 5 Cfp electrons 25/0.25 10/0.18 VCTH .16/0.12 20k T100f O/P 5/0.25 10/0.25 Ccomp 100f 10/0.18 16/0.12 400/0.36 0.16/ 0.16/ 4/0.25 0.12 25/0.5 0.12 5/0.25 8uA 2/0.25 5/.5 4uA 10/1 10/1 16/1 100% CBC3 80f 1/5 new postamp feedback bias scheme (not shown), as well new preamp cascode bias scheme VPAFB as current neutral comparator, addresses CM effects to eliminate "shadow effect" observed when many channels fire

pre & postamp polarity switch options removed

simulation conditions and corners

VDDA = 1.0 V

this is worst case (least headroom for operation) in practice (in experiment) will probably tweak bandgap to be slightly higher than 0.5 so that VDDA will be slightly higher than 1.0 (perhaps 1.05) note: for CBC1 and 2 VDDA was expected to be 1.1, so some small changes have been made to ensure operation at 1.0

temperature = -20, +30

nominal operating temperature will be around 0 will want to test at room temperature

process corners

tt, ff, ss, sf, fs (not pushing to extreme ffc, ssc)

all simulations use extracted circuit files unless otherwise indicated
CBC3 preamplifier

CBC3 preamp

changes from CBC2 highlighted in red

810um² PMOS on IPRE1 decouples disturbance caused by hip signals (will discuss in hips sect'n)

increase of IPRE1 mirror device to 60/1 (from 20/1) allows to run more current in input device

regulated cascode gives higher open loop gain, while simultaneously providing self-biasing of cascode (cures shadow effect)

feedback resistor reduced to 100k (from 200k) to get faster pulse shape

(T network for holes polarity signals removed)

input device choice

CBC2 I/P device = 400/0.36 ($C_{GS} \sim 1 pF$)

(length chosen to avoid 1/f corner penalty - see CBC1 design review) do we need to increase width if need to run at higher IDS to cope with higher sensor capacitance? plot says not much to be gained - still in weak inversion for higher currents most likely to be operating in 150 - 300 uA range increasing width significantly will only give C_{GS} penalty with no g_m enhancement

CBC3 preamp: check IPRE1 mirroring

IPRE1 mirroring

current mirrors well if IPRE1 produced by ideal current source

current in mirror device ~ 6 x IPRE1

CBC3 preamp: check IPRE2 mirroring

IPRE2 mirroring

current mirrors well if IPRE2 produced by ideal current source

current in mirror device $\sim 1.33 \times IPRE2$ (ideally 1.40)

I/P device bias currents for simulation

normal strip length = 5 cm

Cstrip = $5 \times (1.7 \text{ pF/cm}) = 8.5 \text{ pF}$ add something for stray (e.g. tracking on hybrid)

Cin = 10 pF

stability

for stability need noise gain to intersect $A_{\mbox{\tiny OL}}$ in 20 dB/decade region

preamp open loop: IPRE1 = 35uA

preamp open loop: IPRE1 = 5uA

preamp O/P pulseshapes: IPRE1 = 5uA

 \mathcal{S}

preamp open loop: IPRE1 = 90uA

preamp conclusions

preamp design for n-in-p looks ok for:

leakage current: 0 & 1 μA temperature: -20 to +30 feedback resistor and capacitor variation: +/- 15%, +/- 10% all process corners

stability looks ok

may want to reduce IPRE1 for bare chip (i.e. probe testing) (but transient simulation doesn't show oscillation even if leave IPRE1 higher) postamp

beta multiplier "explained" $\beta = \mu C_{ox}(W/L)$ [proportional to W]

upper mirror forces same current (Iref) to flow in both lower transistors

ok if V_{GS} (left) > V_{GS} (right), which can be achieved by making right NMOS wider than left by multiplier factor K (40/10)

in weak inversion Iref = $\underline{nU_{T}InK}$ (U_T = kT/q) R

 $=> R \sim 5M$ for Iref = 10nA (n ~ 1.4, K=4, U_T ~ 25 mV)

see CMOS Circuit Design, Layout and Simulation (3rd ed.) R. Jacob Baker, chapter 20 (particularly page 635 for weak inversion design)

beta multiplier plus start-up and adjustable R

all NMOS enclosed (leakage currents would mess things up)

exclusive OR of RST (startup) lines ensures we can't have a disaster (i.e. get polarity wrong and get stuck in permanent reset!!)

CBC3 postamp opamp

offset trim: extracted vs. schematic

IPAOS = 6 uA

no difference in range covered (schematic vs. extracted) => can rely on schematic sims (extracted takes long time)

offset trim: schematic, all corners, +30, -20

non-monotonicity but overlap

output offset adjust range (including signal)

nominal bias values

output offset adjust range (including signal)

nominal bias values

output offset adjust range (including signal)

nominal bias values

output offset vs. IPAOS

offset value programmed to 128 the stability of the pedestals should depend on how IPAOS varies with temperature

pulse shape vs. VPAFB: VPAFB = 1

pulse shape vs. VPAFB: VPAFB = 7

pulse shape vs. VPAFB: VPAFB = 15

conclusions

some control over pulse duration

trade-off with overshoot

other factors affecting pulse shape: preamp feedback

nominal bias settings

Rpf-15%, Cpf-10%

no significant loss of amplitude

other factors affecting pulse shape: preamp feedback

nominal bias settings

Rpf+15%, Cpf+10%

larger signal size pulse durations exceed 50 nsec, but not by much

other factors affecting pulse shape: postamp bias current IPA

nominal bias settings

Rpf+15%, Cpf+10%

IPA -> 40 uA

some reduction in pulse width achievable

moving on to noise

above for nominal bias conditions (~230 uA in input transistor) 1000e ~achievable for external cap. up to ~10 pF at preamp input no strong dependence on process corners, can rely on tt sims pulse shape varies not much over quite large input capacitance range

moving on to noise

above for nominal bias conditions (~230 uA in input transistor) 1000e ~achievable for external cap. up to ~10 pF at preamp input no strong dependence on process corners, can rely on tt sims pulse shape/height varies not much over quite large input capacitance range

more noise sims

tt, T=0, IPRE1=35uA Rpf =100k, Cpf = 100fF Rpf -15%, Cpf-10% Rpf +15%, Cpf+10%

tt, T=0, external C = 10 pF external C = 15 pF

NEW more noise sims

tt, T=0, IPRE1=35uA Rpf =100k, Cpf = 100fF Rpf -15%, Cpf-10% Rpf +15%, Cpf+10%

tt, T=0, external C = 10 pF external C = 15 pF

more noise sims

hips

postamp output

single channel response to 4 pC some differences in response between schematic and extracted overall recovery time similar

hips - multichannel

using extracted preamp&postamp

21 channels simulated (centre + 10 either side)

(previously simulated more but for schematic only)

Cbp = 4p, Cis = 2.5p, Cc = 150p, Cst = 1p

hips - multichannel - VPAFB bias 7 (0-15)

2.5 fC injected on centre channel & nearest neighbour

tt sim, T = 0 (Not much dependence on process. Baseline recovery slightly faster at higher T)

hips - multichannel - VPAFB bias 9 (0-15)

0.57

0.0

100n

300n

t(s)

400n

500n

200n

hips - multichannel - VPAFB bias 11 (0-15)

t(s)

hips - multichannel - effect of removing IPRE1 decoupling

4 pC injected on centre channel

effect of removing decoupling on IPRE1 bias node **50 mV** = ~1 fC

2.5 fC injected on centre channel & nearest neighbour

multichannel crosstalk

comparator

current neutral circuit

CBC3 comparator

analogue and digital

current neutral circuit

nc50 startup

VDDA ramps to 1V in ~ 20secs all corners, extracted circuit ICOMP = 5u +50, -40 VDDA = 1V all corners, extracted circuit ICOMP ramps to 12uA in ~ 20secs +50, -40

timewalk

VPAFB = 7 thresh = .67 fC sig=0.83 fC & 6.7 fC hyst = 0 (minimum)

timewalk

VPAFB = 11 thresh = .67 fC sig=0.83 fC & 6.7 fC hyst = 0

timewalk

VPAFB = 15 thresh = .67 fC sig=0.83 fC & 6.7 fC hyst = 0

timewalk within spec.

comp. response: T=0, VPAFB = 7, nom params, all corners

signals in range 1-4 mips can be constrained to 1 BX

5 mip signals may stray into neighbouring BX

25 nsec sampling points

comp. response: T=0, VPAFB = **11**, nom params, all corners

signals in range 1-5 mips can be constrained to 1 BX

25 nsec sampling points

comp. response: T=0, VPAFB = 15, nom params, all corners

signals in range 1-5 mips can be constrained to 1 BX
comp. response: T=0, VPAFB = 15, nom params, all corners

Rpf+15% Cpf+10%

signals in range 1-3 mips can be constrained to 1 BX

4, 5 mip signals will stray into neighbouring BX

25 nsec sampling points

comp. response: T=0, VPAFB = 15, nom params, all corners

Rpf+15% Cpf+10% Icomp 5 -> 8 uA

signals in range 1-4 mips can be constrained to 1 BX

5 mip signals will stray into neighbouring BX

25 nsec sampling points

comp. response: T=0, VPAFB = 15, nom params, all corners

Rpf+15% Cpf+10% Icomp: 5 -> 8 uA IPA: 20 -> 30 uA

signals in range 1-5 mips can be constrained to 1 BX

25 nsec sampling points

111

comp. response: T=0, VPAFB = 7, nom params, all corners

C=16p IPRE1 = 80uA

signals in range 1-~5 mips can be constrained to 1 BX

25 nsec sampling points

hysteresis

have always used CBC on minimum hysteresis setting

but check it's working

blue = no hysteresis red = with hysteresis conclusions on comparator

fast enough

timewalk within spec. signal can be constrained to single bunch crossing in most cases adjustment available, if necessary

LDO

CBC3 LDO

draws ~1200 μ A from Vin (bias resistor -> 5k)

CBC3 LDO (simplified)

simulation approach

better capacitor models

found some commercial models for external capacitor

can now get up to 4.7 uF in 0402 package

(0.22 uF used on CBC2 hybrids)

have tried 0.22, 0.33, 0.47, 0.68 and 1 uF models from Murata

no issues with higher values

- will only show results for 0.22 uF model here

* SPICE Model generated by Murata Manufacturing Co., Ltd. * Copyright(C) Murata Manufacturing Co., Ltd. * Description :1005/X5R/0.22uF/25V * Murata P/N :GRM155R61E224KE01 * Property : C = 0.22[uF] *_____ * Applicable Conditions: * Frequency Range = 100000Hz-60000000Hz * Temperature = 25 degC * DC Bias Voltage = 0V Small Signal Operation *_____ .SUBCKT cu22 port1 port2 C1 port1 11 1.37e-7 L2 11 12 1.44e-10 R3 12 13 1.65e-2 C4 13 14 1.10e-6 R4 13 14 2.80 C5 14 15 3.01e-6 R5 14 15 8.31e-2 C6 15 16 2.16e-6 R6 15 16 2.22e-2 L7 16 17 2.55e-11 R7 16 17 2.19e-1 L8 17 18 1.34e-10 R8 17 18 6.69e-2 C9 18 19 1.58e-6 L9 18 19 7.07e-12 R9 18 19 6.37e-3 C10 19 20 5.41e-7 L10 19 20 1.11e-11 R10 19 20 1.09e-2 C11 20 port2 2.55e-12 L11 20 port2 8.73e-11 R11 20 port2 19.5 R100 port1 11 2.27e+8 .ENDS cu22

schematic vs extracted: +40, -40, all corners

extracted circuit: output voltage a bit lower struggling at higher load current for slow P corners slow P corners (cold and hot)

schematic vs extracted: +40, -40, all corners

schematic vs extracted: +40, -40, all corners

increasing VDDD by 10 mV and R_{oc} = 5m still seems ok for extracted circuit

startup check

simulation shows all corners, +/- 40 deg

between .2 and 1.2 secs

VDDD ramps up to 1.11 V Vref ramps up to 0.51 V

at 2 secs

Vref goes to zero

between 2.2 and 3 secs

Vref ramps back up to 0.51 V

no startup issues (no reason to expect)

LDO conclusions

at nominal ~100 mA VDDD down to ~1.1 V can be tolerated

at 200 mA VDDD down to 1.11 V is ~ok (no harm in reducing R_{oc})

most likely VDDD spec for DC-DC converter on module will be 1.25 +/- 0.05 (requirement for MPA asic)

power supply rejection

126

power supply rejection

VDDD = 8 MHz square wave, 100 mV pk-pk centred on 1.2 V - unrealistic

interference visible here would add to intrinsic noise but probably not dominate

power supply rejection

VDDD = 8 MHz square wave, 20 mV pk-pk centred on 1.2 V - probably still unrealistic

interference barely visible here but in reality would be lost in intrinsic noise

OTHER SIMULATIONS

effect of VPLUS/VPLUS2 mismatch - 1 mip signal

130

postamp feedback bias mismatch

multi-channel simulations - effect of power and bias resistance

GND rails at top and bottom

also provide extra ground connections at front edge

simulation conditions

250 channels power supply and ground resistances as per Lawrence's information bias line resistances - 1 ohm -> 0.45 ohms between channels adding extra ground connections at preamp edge every 10th channel tt case, 0 deg.

hip signal crosstalk

4pC hip signal on channel 125 postamp output shows < 5mV disturbance (in signal direction) for other channels

spare

dropout check

vout vs vin for vref = .5 to .53iload = 250 mA T= +30, -20 all process corners

CBC2 LDO measurements

analogue current consumption

- \sim 300uA / chan. for 5 cm strips
- => ~80 mA / chip
- => ~40 mV dropout => plenty of headroom

analogue current consumption

- ~ 700uA / chan. for 8 cm strips
- => ~180 mA / chip
- => ~80 mV dropout => just enough headroom

=> no need to change core LDO design (only feedback resistor tweaks)

NMOS noise

postamp compensation

139

postamp compensation

postamp tuning

can use diff. pair tail current to tune frequency response

10 - 30 uA gives rise time constant 8 - 20 us