CBC3 progress

Tracker Week, Phase 2 Electronics, 21st July, 2016

Mark Raymond, Imperial College Mark Prydderch, Michelle Key-Charriere, Lawrence Jones, Stephen Bell, RAL

1

introduction

previous talks

May 2015 tracker week: CBC3 specifications http://www.hep.ph.ic.ac.uk/~dmray/CBC documentation/Phase 2 elec CBC3specs May 2015.pdf November 2015 tracker upgrade week: CBC3 design progress http://www.hep.ph.ic.ac.uk/~dmray/CBC documentation/CBC3progress Nov 2015.pdf January 2016 tracker week: CBC3 design progress http://www.hep.ph.ic.ac.uk/~dmray/CBC documentation/CBC3progress Jan 2016.pdf May 2016 tracker phase 2 upgrade week week: CBC3 design progress http://www.hep.ph.ic.ac.uk/~dmray/CBC documentation/CBC3progress Jan 2016.pdf

today

the chip is "finished" summary of features & post-layout performance preliminary thoughts on testing & test schedule

CBC3 block diagram

some just tweaks some more significant

many changes compared

stub gathering logic

data packet assembly /transmission -> 6 lines @ 320 Mbps

new clocking & signalling 320 MHz clock

320 Mbps fast control

+ longer pipeline, 1 MHz triggering capability,

main digital functionality

Hit Detect

samples unmasked comparator outputs @ 40 MHz (phase adjustable via DLL)

Top/Bottom Channel Swap

swaps seed/window layer to keep seed layer closest to beam for modules on both sides of rod

CWD

clusters up to 4 strips wide accepted 2 & 4 strip clusters assigned to mid-position $=> \frac{1}{2}$ strip resolution => 8-bit cluster address

Offset Correction & Correlation

window width programmable up to ± 7 strips (1/2 strip res'n) window can be offset up to ± 3 strips (1/2 strip res'n) (4 domains / chip) 5-bit bend info indicates position of cluster in window

Stub Gathering Logic

up to 3 stub addresses + bend info passed to bend lookup formatting block every BX 1st 3 stubs only

more than 3 -> Stub Overflow bit set in O/P data packet

Bend lookup formatting

5 bits bend info reduced to 4 bits using programmable lookup table

Data Packet Assembly & Transmission

6 SLVS differential pairs transmitted off-chip @ 320 Mbps 5 for stub data, 1 for L1 readout data

digital simulations

Pipeline & Buffer RAM simulation for cut down layout. Corner ssf at 1.2V, +30C

CBC3 Top Level

20 columns, 43 rows (1 more column than CBC2)

5.25 mm x 11 mm

CBC3 production

CBC3 sharing wafer with GBT-SCA chip

1 CBC3 : 6 SCA

SCA is wire-bond chip CBC3 has one wire-bond column

plan is to ask for all wafers to be delivered un-bumped (Global Foundries out-sources wafer bumping anyway)

then look after getting bumping done ourselves for the CBC3 dedicated wafers

should be straightforward but important to get bump-bond pad design correct

final pad design not yet resolved

current design of CBC3 bump-bond pad (pad metal is the same as if it was actually a wire-bond pad)

	July	Aug	Sep	Oct	Nov	Dec	Jan	⊦eb	Mar	Apr	May	Jun
BC3 submitted						 :						
1 st wafers out of	fab, send	for dia	ing							:		:
W	/ire-bonda	ble ch	ips in ł	nand	1	:		 	 :	 : 	 :	 : :
	 		! ! V	vire-bo	nd chi	p carrie	ər	 :		 :	 :	 :
				+ in	terface	card						
				+	VME D	AQ				:	 	·
				can sta	art to d	evelop	_					
			 	sina F	7 bas	ed DA	Ŋ	 : 	 : 	 	 :	
				5g .						:		
othe	er wafers a	rrive, :	send fo	or bum	ping			 : 	 : 		 : 	
			bum	ped wa	afers ir	hand						
	prob	e-test	bumpe	ed waf	er, sen	d for d	icing			 	 : 	 :
bump-bondat	ole chips ir	hand	, send	to hyb	rid co.	for bui	mp-bo	nding				
			CBC	3 chip	s on 2	CBC3 I	hybrids	s unde	r test			
				 	1 st 2CBC3 mini-module?							
			 			 		 	1	•		
						 		2CBC	3 hybi	rid	 : 	
								2CBC3 hybrid interface card				
				•				F(C7 bas	ed 2C	BC3 D	AQ

1st tests

1st diced chips will be wire-bondable

can follow similar test procedures to CBC2

make single chip carrier + interface board

useful for:

developing wafer probe tests ionizing tests SEU tests

need to adapt/develop DAQ hardware/firmware/software to deal with 6 x 320 Mbps data streams

CBC3 initial test system development: control & DAQ Kirika Uchida

CBC3 initial test system development: control & DAQ Kirika Uchida

summary

CBC3 is the final prototype of the 2S module front end chip

contains all the functionality required

post-layout simulations meet specifications

soon to be submitted for manufacture on 2 month turnaround

next steps

write a user manual

prepare test setups

hardware, firmware & software

extra

40 MHz test mode

if necessary (e.g. for wafer probing) can run chip at 40 MHz

Programmable Delay 5 MHz Region Test Pulse Generator Bend 5 MHz lookup Data Packet Stub & DLL formatting Assembly & Triggered DLL Transmission Data 5 MHz 40Mbps Diff. I/P 40MHz recovery bypáss Fast Control 40MHz Diff. Clock 40 MHz Region Ck40

40 MHz test mode

change 320 -> 40 MHz (Ck40)

run SCI at 40 Mbps on-chip recovered clock is 5 MHz

> bypass 40 MHz DLL (have to - it will not capture)

feed Test Pulse DLL from Ck40

CBC2 vs. CBC3

increase in bias FET

top & bottom channel swap

modules mounted above and below support structure will be flipped (probably)

=> seed and window layers will also be flipped unless do something about it

(expect lower efficiency when seeding from outer layer because of scattering and conversions -> more hits in outer layer which don't correspond to valid stub)

simplest thing is to swap channels on chip

module flipped

14

13

11

13

1<->2.3<->4.5<->6.....

r∧

window layer

3

5

12

14

10

8

back to seed layer nearer

interaction point

6

4

2

20

seed laver 10 12 14 2 4 6 8

9

11

seed layer nearer interaction point

now window layer nearer interaction point

7

5

3

9