CMS Binary Chip development for the Outer Tracker High-Luminosity Upgrade

STFC RAL: <u>Mark Prydderch</u>, D. Braga, L. Jones, P. Murray Imperial College: G. Hall, M. Raymond, M. Pesaresi

Outline

- Background
- CBC2 Features
- CBC2 Testing
- Future work
- Summary & Conclusion

Phase-II Upgrade of the CMS Strip Tracker

- Baseline design: Barrel+5Endcaps
- Based on 2 module types only
- Provides at the same time:
 - *readout data* upon receipt of L1 trigger
 - trigger data @40MHz

Basic Trigger Module Concept

16 April 2014 A. Honma, Phase2 Outer Tracker Upgrade ElectronicsMeeting 5

High Pt Track Identification Concept

- High-PT tracks (stubs) can be identified if cluster centre in top layer lies within a search window in R-Φ (rows)
- p_T cut given by: module radius (z), sensor separation and correlation window

First Version: CBC Main Features

- IBM 130nm CMOS process
- binary, unsparsified architecture
 - retains chip and system simplicity
 - but no pulse height data
- designed for ~2.5 5cm μ strips < ~10 pF
- 128 channels, 50 μm pitch wire-bond
 - either polarity input signal
- not contributing to L1 trigger
- powering test features:
 - 2.5 -> 1.2 DC-DC converter
 - LDO regulator (1.2 -> 1.1) feeds analogue FE
- fast (SLVS) and slow (I2C) control interfaces

CBC(1) Test Results

e.g. for 5pF input capacitance:

noise: ~ 800 e_{RMS}

total power: < 300 μW/channel

see: "M.Raymond et al 2012 JINST 7 C01033" "W.Ferguson et al 2012 JINST 7 C08006"

beam profile

APV plane

CBC sensor

CBC \rightarrow **CBC2**: New Features

BOND 250µm pitch C4 layout

WIRE

PADS (for commercially assembled module)

- 254 channels for 127 + 127 strips
- Vetoes of wide clusters
- Correlation logic for stub formation
- Front-end circuit improvements
- On-chip test pulse circuit with DLL for timing adjustment
- 4 bit direct input for controls (T1 trigger, Fast reset, Test pulse & I2C refresh)
- Analogue Multiplexer for bias monitoring
- Improved DC-DC (CERN)
- Back edge wire-bond pads for wafer probe
- Received Jan 2013 fully functional

Analogue Front End

CBC2 Front End Specifications

Detector Type:	Silicon Strip
Signal Polarity:	both (electrons and holes)
Strip length:	2.5 – 5cm
Strip Capacitance:	< 10pF
Coupling:	AC or DC
Detector leakage:	up to 1uA leakage current compensation
Noise:	<1000e ⁻ _{RMS} for 5pF sensor capacitance
Overload recovery:	normal response within ~ 2.5µs after 4pC signal
Power:	~500μW / channel (for 5pF strips)
Power supply:	1.1 V (front end supplied through LDO to get supply noise rejection)
Gain	50mV/fC
Dynamic range:	Linear up to 4fC
Timewalk:	<16ns for 1.25fC and 10fC signals with comp. thresh. set at 1fC

CBC 2 Front End

Digital Back End

Data buffer and Readout

- 256-deep memory \rightarrow max 6.4µs L1 trigger latency
- Dual-port SRAM (SEU considered tolerable for data)
- 32-deep additional buffer for events awaiting readout
- Data serialized in 266 bit long packets

- Write and Read pointers separated by programmable latency
- 2 error bits:

.

•

- Monitor the difference between Wr/Rd pointers against programmed latency
- Buffer overflow
- The address of the trigger counter is also a useful way to check the synchronization of different chips on the module
- Liu-Whitaker SEU-hardened Flip Flops for control logic

Stub Finding Logic

CBC2 Test Activities

CBC2 Test Activities

Wire-bond CBC2

- Useful to develop wafer probe procedures
- X-rays TID testing

2xCBC2 hybrid

- Hybrid characterization and chip integration
- Bump-bonded ASICs
- Inter-chip links & logic

2xCBC2 mini-module + sensor

- Sr-90 source
- Cosmic rays
- Beam Test

Single Chip Results

60

5fC

60

sweep global comparator threshold VCTH to get s-curves for range of test pulse amplitudes

plot s-curve mid-points vs. TP amp

rough calculation in 1÷2fC region (assumes TP value of 12 / fC)

(* from VCTH bias sweep measurements)

Noise & Power

		1200	electrons				400	0		
Analog:	130 + (21 x C _{in} [pF]) μW	1000	mode			•	- 350	0We		
Digital: Trig. logic:	50μW	1008)		- 300	ir/ch		
Total:	<230 + (21 x C _{in} [pF]) μW	<u>م</u> 600		4)	- 250	an.		
APV25	~2.6mW (long strips)	50 400)		200			
		200		\mathcal{I}	Image: Apple of the second		150	150		
		200	\bigcirc		O∕Osi	mulation				
		0					<u> </u>			
		() 2	4 6	6 8	3 10	12			
			external capacitance [pF]							

noise & analogue power vs. external capacitance

- Noise and power depends on external input capacitance •
- The current settings in the front-end are adjusted to maintain the same pulse shape • for different C_{in}
- Results almost identical for e⁻ and h⁺

 \rightarrow Within specification with ~800e⁻_{RMS} for 5pF strips at <325 μ W/channel

S-Curves and Tuning

CBC2 channel no.

Results with On Chip Test Pulse

→ Test pulse together with individually-programmable channel masks can be used to fully exercise the coincidence logic

Mini Module Results

Logic tests using beta source

Beam test results

Incident Angle

Future Work

Future Work

- Further testing of CBC2 up to 50 Mrad TID
- Testing for SE effects UC Louvain's cyclotron with protons (~50MeV)

CBC3 (Final Prototype)

- Front End:
 - Adjust pre-amp (1V operation, single polarity, AC coupled & larger sensor capacitance)
 - Extra Comparator -- 3σ Threshold
 - ✤ Additional circuit to suppress HIPs
- ***** Increase Pipeline to 12μs (possibly 25μs)
- Stub finding logic:
 - ♦ $\frac{1}{2}$ strip cluster resolution \rightarrow 8 bit stub address
 - 5 bit bend information
 - Priority selection of 3 highest-pT stubs
 - Offset correction: 4 domains/chip (2 in CBC2)

Stub readout:

- 13 bit/stub with up to 3 stubs/Bunch Crossing
- Data Output: 6 SLVS differential pairs @ 320Mbps
- Possible change to bump pad layout (Adjust for increased pitch)

Summary & Conclusions

Two successful full-size prototypes of new Outer

Tracker ASIC

- ✓ CBC2 working to specs
- ✓ Some front-end improvements over CBC1
- ✓ Stub finding logic functioning
- ✓ Power features (LDO & DC-DC) operational

First prototype version of 2S module in hand

- ✓ First demonstration of bump-bonded ASIC for strip readout
- ✓ Ready to be distributed to collaborating institutes
- ✓ First beam test followed by ionizing radiation studies

Acknowledgements

RAL: D. Braga, L. Jones, P. Murray

Imperial College: M. Raymond, G. Hall, M. Pesaresi.

CERN: S. Michelis, F. Faccio, K. Kloukinas

Many others for the beam test...

Total Ionizing Dose test

- First xray irradiation to 10 Mrads
- CBC2 operated continuously during irradiation
- monitored currents, biases, pedestal, noise
- no significant change in performance, moderate increase in current before annealing
- Next: TID test up to 50 Mrads

Noise & Power

		1200	elec	trons				- 4	00	ξ
Analog:	130 + (21 x C _{in} [pF]) μW	1000		oae				3	50	
Digital:	50μW <50μW	800		é		+		- 3	00	1/25
Total:	<230 + (21 x C _{in} [pF]) μW	<mark>9</mark> 600	()		\bigcirc		- 2	50	3
APV25	~2.6mW (long strips)	2 400				,		2	00 🛓	
		200				● µ meas	Sured		50	
		0						1	00	
		Ŭ) 2	2 4	6	8	10	12	00	
		external capacitance [pF]								

noise & power vs. external capacitance

- Noise and power depends on external input capacitance
- The current settings in the front-end are adjusted to maintain the same pulse shape for different C_{in}
- Results almost identical for e⁻ and h⁺

 \rightarrow specification of 1000e⁻_{RMS} for 5cm strips met with 350µW/channel

Power distribution

NB: the last column of PADs to the right are wire-bondable, they will not be routed on hybrid (->possible to reach the 3 pads to their left)

All but 160MHz output pads have redundancy

lines and arrows show direction of power flow (GND not shown)

note:

DC-DC 1.2 not connected to VDDD or VLDOI on-chip

LDO output also connected to VDDA offchip

(the idea is to maximise possible effectiveness of off-chip filtering)

Inputs dummy prev/next chip gnd

