Electronics for 2S-Pt modules: CBC2

D.Braga, M.Prydderch (STFC RAL) G.Hall, M.Pesaresi, M.Raymond (IC)

Tracker Week Phase II Electronics Meeting, 26 April 2012

P_T **Discrimination**

CBC2 to correlate hits in two closely separated sensors to discriminate between high and low P_{T} tracks

2S (Strips-Strips) module:

- 16 readout ASICs
- each reading 127 strips from bottom sensor and 127 from top s.

CBC Test Results

e.g. for 5pF input capacitance:

noise: ~ 800 e_{RMS}

total power: < 300 µW/channel

CBC2 coincidence logic estimated consumption: ~50uW/channel

CBC(1) -> **CBC2**

Features kept:

- L1 triggered readout
- Powering features (DC-DC and LDO)

New features:

- 250um C4 bump-bonding
- 254 channels (not 256): allows correlation between 127 strips on top and bottom sensors (one spare binary code)
- Internal test pulse programmable amplitude and delay
- Trigger output if correlation between clusters

programmable window and offset

CBC

128 channels wirebond: 50 um pitch 7mm x 4mm

CBC2

254 channels C4 bump-bond: 250 um pitch 10.75mm x 4.75mm

]• (0		0				0	0			2
		D								
			E							
			В							
	17.4									
1										
) (C										
				2						1
) (C										
] (0										
) (C										
) (C										
) (C										
) (C										
) (C								þ		
3				- 19 - 19						
						hout	ed.			
		P								
			E							
		D	E							1
]¢ ⁄ •[]	Pe.	0								

Top Level status						
Analog channels	completed					
Coincidence logic	completed, now working on readout					
Pipeline memory	completed					
Bandgap reference	as in CBC1			None		
DCDC converter	supplied by CERN, almost ready					
Low Voltage Dropout Regulator as in CBC1						
Bias, Test Pulse circ not completed	uit, Readout, top level integration				Bandgap	

CBC2 architecture

(M.Raymond: 2S-Pt module systems meeting, CERN, 22nd March, 2012)

blocks associated with Pt stub generation

channel mask: block noisy channels (but not from pipeline) cluster width discrimination: exclude wide clusters offset correction and correlation: correct for phi offset across module and correlate between layers stub shift register: test feature - shift out result of correlation operation at 40 MHz fast OR at comp. O/P and correlation O/P: - can select either to transmit off-chip for normal operation choose correlation O/P

adding comp O/Ps -> 30 signals altogether, top and bottom of chip

Channel layout

- Power distribution optimized (made use of wider pitch)
- Postamplifier feedback network bias: local buffer to avoid effect of CM shift (additional ~5uW/channel)
- Comparator: internal hysteresis to solve drive issue of previous resistive network

Digital part - Detail

9

Digital part - Detail

Coincidence logic - Detail

- A: Cluster width discrimination for bottom sensor hits
- B: Cluster width discrimination for top sensor hits
- C: Coincidence logic (with programmable window and offset correction)
- D: Shift register for stubs readout and shadow SR for readout control
- E: lines to/from previous/next channels (propagate for ~1mm (11*80um))

PAD scheme

43 rows x 19 cols = \sim 800 bumps

10.75 x 4.75 mm²

outputs to / inputs from neighbours

probe-able pads for wafer test

access to: power fast control I2C outputs

should be able to provide quite thorough test of chip functionality

NB: at least 2 columns of gnd pads must separate input pads and pads for digital inter-chip signals (orange)

Power distribution

NB: the last column of PADs to the right are wire-bondable, they will not be routed on hybrid (->possible to reach the 3 pads to their left) Except for 160M diff pads all the other signals have 2 or more pads shorted together for reliability.

lines and arrows show direction of power flow (GND not shown)

note:

DC-DC 1.2 not connected to VDDD or VLDOI on-chip

LDO output also connected to VDDA off-chip

(the idea is to maximise possible effectiveness of off-chip filtering)