# CMS Binary Chip (CBC): status and development

D.Braga, L.Jones, P.Murray, M.Prydderch (RAL) G.Hall, M.Pesaresi, M.Raymond (IC)

CMS Upgrade Week, FNAL, 07 Nov 11

Imperial College London



### **CBC** overview

#### 2.5 -> 1.25 DC-DC converter

#### features

- designed for short strips, ~2.5–5cm, < ~ 10 pF</li>
- full size prototype 128 channels
  50 μm pitch wirebond
- · binary un-sparsified readout
- powering test features

2.5 -> 1.2 DC-DC converter

LDO regulator (1.2 -> 1.1) feeds analog FE

#### main functional blocks

- fast front end amplifier 20 nsec peaking
- comparator with programmable threshold trim
- 256 deep pipeline (6.4 us)
- 32 deep buffer for triggered events
- fast (SLVS) and slow (I2C) control interfaces

#### front end

- DC coupling to sensor up to 1 uA leakage
- · can be used for both sensor polarities



from M.Raymond's: http://www.hep.ph.ic.ac.uk/~dmray/CBC\_documentation/CBC\_status\_Oct\_2011.pdf

### Architecture





**preamp**: leakage tolerance  $1\mu A$  verified, both polarities

postamp: gain: ~ 50 mV / fC

**comparator**: input peaking time ~20ns global threshold 8b programmable offset programmable hysteresis

### **Test Results**



e.g. for 5pF input capacitance:

noise: ~ 800 e<sub>RMS</sub>

total power: < 300 µW/channel



### **Beta-source results**

- Sr-90 source, 5cm p-on-n strip sensor
- Scintillator trigger is time-stamped with 1ns resolution to select events in phase with 40MHz CBC clock
- Landau fitting of correctly-timed events gives 840e noise



5



#### lab system for source measurements



### **Parasitic beam test**

- CBC+sensor recently operated parasitically in 400GeV proton beam (UA9 crystal collimation test – September 2011)
- for further details see: M.Pesaresi et al 2011 JINST 6 P04006







# **P<sub>T</sub> Discrimination**



Correlates hits in two closely separated sensors to discriminate between high and low P<sub>T</sub> tracks

 $P_{T}$  cut of ~2GeV should give reduction rate of ~20

(see M.Pesaresi Development of a new silicon tracker at CMS for Super-LHC, CERN-THESIS-2010-083)

# P<sub>T</sub> module: strip+strip (2S)



### **Next Version**

250µm C4 Bump Bonding

256 channels

Internal test pulse calibration

**Monitoring ADC** 

Keep DC\_DC and LDO

Multi-mode readout: (3 consecutives frames when triggered)

Layout reuses existing blocks where possible



existing chip 128 channels wirebond: 50 um pitch 7mm x 4mm

next version 256 channels bump-bond: 250 um pitch 10.75mm x 4.75mm



# **Trigger Logic**

#### current CBC

#### **CBC** + added triggering logic

![](_page_10_Figure_3.jpeg)

input de-scrambling cluster width discrimination allows for flexible connections on the module prototype

ination excludes wide clusters

correlation & offset correction corrects for phi offset across module and perform correlation

trigger data formation and off-chip transmission

just simple OR for next version

 $\rightarrow$  1 bit to signify high PT stub detected (no stub address)

final requirements still under consideration: synchronous or asynchronous options are possible

# Input de-scrambling/mapping

![](_page_11_Figure_1.jpeg)

- Input PADs arranged in rows of 6: these 6 pads can be connected to any combination of
  3 channels from the inner sensor layer and 3 channels from the outer sensor.
- Comes after the comparator so does not affect the front-end.
- Allows flexibility in module-prototyping.

### **Cluster Width Discrimination**

![](_page_12_Figure_1.jpeg)

- Looks at adjacent channels from same detector layer
- Rejects clusters above a programmable max-width
- Needs inputs from neighbouring chips at the edges

### **Correlation & Offset Correction**

![](_page_13_Figure_1.jpeg)

channel n CWD output from inner layer

- Window width determines Pt cut
- Offset varies depending on location across sensor
  - (& separation between layers)

Needs also inputs from neighbouring chips at the edges

![](_page_13_Figure_7.jpeg)

### **Summary**

#### **STATUS:**

- Results on test bench and with beta source confirm expectations
- CBC + detector also recently tested in proton beam. Preliminary results encouraging.

#### **FUTURE PLAN**

- Submission of next version featuring 256 channels, bump-bonded PADs and coincidence logic for L1 trigger early next year
- Future tests of radiation hardness

#### Imperial College London

![](_page_14_Picture_8.jpeg)