CBC 2 offset tuning

Kirika Uchida Imperial College London

CBC 2

Registers for the tuning

VPLUS : DC baseline voltage setting at the postamp output for all the channels in the chipVCTH : The comparator threshold voltage setting for all the channels in the chipOFFSET : Individual fine tuning of the DC voltage for each of 254 channels.

S-curve for pedestal

- A comparator threshold (VCTH) scan fixing other registers on pedestals
 - S-curve : hit rate vs. VCTH

S-curve for test pulse

- A comparator threshold (VCTH) scan fixing other registers on a certain size of test pulse
 - S-curve : hit rate vs. VCTH

Offset tuning

• Objective

- Alignment of the pedestals of all the channels at the comparator input in the middle range of power supply.
- Strategy
 - Alignment of the s-curve of pedestals for all the channels 50% hit rate point for a certain input corresponds to a certain VCTH value (target VCTH s-curve mid-point) for a suitable choice of value for the OFFSET register for each channel and Vplus.

Offset tuning strategy – input

- Up to this proposal, offset tuning has been done with hit detection in single mode (detects an edge and create single clock cycle hit) with small test pulse.
 - Advantage :

All channels not firing at once since test pulses are created for 32 channels at once.

(firing all the channels create oscillations in the circuit)

– Disadvantage:

Resolutions of the timing(?) and size of the test pulse (20%-30%).

In this proposal, offset tuning is done in hit detection variable mode without test pulse but tuning is done in a group setting other channels offsets to be 0xFF (0x00) for electron (hole) mode.

Offset tuning strategy – VCTH and VPLUS

- Generated in the same way.
 The range of the voltages are ~ the same.
 (some chip-to-chip variation)
 - Not perfectly monotonic. It might be better for VCTH to be monotonic and to be solved in CBC3
- Resolution : ~ 2.5mV(~300 e)/register unit A plan to improved resolution for CBC3

VCTH non-monotonicity should be considered in offset tuning and threshold . 0x80 and 0x7F are to be avoided as the target mid-point in the offset tuning and the threshold setting.

> 0x78 is chosen for the target VCTH s-curve mid-point for the pedestal

Offset tuning strategy – OFFSET

٠

• Offset cannot be 0.

Study of offset tuning with different target VCTH s-curve mid-point shows increase in the spread with high target value (high offset values).

Due to spread in current DAC and offset resister values across the chip.

Just aim to have the average ~ 80

Offset tuning procedure

- Obtain VPLUS value with all OFFSETs at 80(0x50) which gives S-curve VCTH mid-points of pedestals at 120(0x78) in average.
- 2. Optimise **OFFSET**s with the VPLUS to have S-curve VCTH mid-points of all channels at 120(0x78) for pedestals.

VCTH scan is done for 32 channels at once.

OFFSETs for other channels are always set to 0xFF(0x00) for electron (hole) mode.

1. VPLUS tuning - electron mode

VCTH scan for couple of VPLUS values with OFFSETs 0x50 (80)

VPLUS at **0x60**, **0x70**, **0x80**, **0x90**

VplusScan BE 0 FE 0 CBC 0

Pedestal S-curve VCTH mid-point

2. OFFSET tuning - electron mode

Tune OFFSETs to have s-curves mid-point to target VCTH 0x78(120) with the VPLUS.

- 1. OFFSETs are set to 0
- Set bit[i] to 1 and check VCTH middle points, if it is greater than 120, set bit[i] to 0. Loop over i = 7 to 0.

VPLUS + OFFSET

Offset tuning result (e mode, w/o sensors)

Summary

- New offset tuning procedure is proposed.
 - The range of VCTH, VPLUS, & OFFSET and monotonicity of VCTH are taken into account.
- The tuning is demonstrated and documentation is prepared.
 - The tuning result shown in this presentation implemented in c++ for single GLIB beamtest setup.
 - It takes ~5 (3) mins for 2CBC (254 x 2 channels) with GUI(w/o GUI)

backup

DAQ commissioning mode

• Trigger is generated at FPGA on GLIB periodically.

Gain in e mode, w/o sensor

Offset tuning result (hole mode, w/o sensors)

Width : sigma of the Gaussian which corresponds to the S-curve

Gain in hole mode, w/o sensor

Test pulse enabled

S-curve mid-point VCTH register value 240 220 200 180 160 140 5σ 120 50 20 30 40 70 80 0 10 60 Test pulse register value 0fC 1fC *2fC* 3fC 4fC 5fC

Pedestal 119.82 (1σ = 1.69)

S-curves at the binary transitions

Pedestal S-curves

Target mid-pint VCTH : 0x7F(01111111)

Target mid-pint VCTH : 0x80(1000000)

Target mid-pint VCTH : 0x87(10000111)

Gain in hole mode, w/o sensor

Test pulse enabled

S-curve mid-point VCTH register value 240 220 200 180 160 5σ 140 120 20 50 10 10 30 40 60 70 80 Test pulse register value 0fC 1fC *2fC* 3fC 4fC 5fC

Pedestal 134.85 (1\sigma= 1.68)