2xCBC2 hybrid functional test results

results from screening first 5 bump-bonded hybrids

objective to verify functionality - looking for anything that might indicate failure of bump-bonding process

Mark Raymond, CMS Tracker Week, Tracker Phase 2 Electronics, May 2013.

hybrid test setup

measured power parameters

band-gap voltage accessible via on-chip analogue mux

LDO O/P voltage recorded for baseline set of bias parameters

powering measurements

both chips powered from 1.2V VDDD rail analogue powered via LDO (VDDD in / VDDA out) current measured in VDDD rail

baseline current (digital + quiescent analogue) ~ 6mA / chip

LDO out vs. band-gap

total hybrid power supply	baseline I2C bias va	baseline I2C bias values					
conditions	hybrid 1	hybrid 2	hybrid 3	hybrid 4	hybrid 5	IPRE1	35
all current biases zero, SLVS off, both chips	7.0	7.2	6.7	6.7	6.7	IPRE2 IPSF	20 45
all current biases zero, SLVS on for one chip	9.5	9.9	9.3	9.2	9.5	IPA IPAOS	30 45
all current biases zero, SLVS on, both chips	12.2	12.7	12.0	11.8	12.3	VPAFB ICOMP	0 30
current biases to baseline values, chip A	39.6	40.1	39.9	41.9	41.1	VPC	74 100
current biases to baseline values, both chips	67.6	68.8	67.7	70.6	69.6	VPLUS	100

note: baseline I2C values chosen for no significant external capacitance (IPRE1 needs to be chosen appropriately, depending on sensor capacitance)

voltage bias sweep measurements

voltage biases externally accessible via on-chip analogue mux

sweep the parameter of interest, all other I2C parameters set to baseline values

no surprises, behaviour as expected, and not significantly different to prototype measurements

voltage bias sweep results - all hybrids

current bias sweep measurements

CBC1 measurement

All other currents [microamps]

results as expected, and similar to prototype

current bias sweep measurements - all hybrids

7

gain measurements

sweep test pulse amplitude and measure s-curve mid-points by sweeping global comparator threshold voltage VCTH

comparator offsets tuned to a VCTH vlaue of 150 at test pulse amplitude 12

(12 corresponds to approximately 1 fC assuming 20fF charge injection capacitance)

gain measurements - all hybrids

gain vs. channel number

fit shows slope for some chips higher gains for higher channel nos. ~ flat for some chips (but no negative slope) across chip trend in charge inject capacitors? would expect opposite slope as well ... need more data

individual comparator channel offset tuning - all hybrids

all channels tuned to position S-curve midpoints at **same** value of global comparator threshold VCTH chip-to-chip variation in average level and channel-to-channel spread within tuning range not necessary to adjust any other parameter

test pulse injection time sweep

using on-chip test pulse

sweep time of charge injection for range of test pulse amplitudes

comparator threshold at 1 fC

test pulse amplitudes 1.25, 2, 4, 10 fC

input channel connectivity testing

asynchronous squarewave applied to hybrid support plate capacitively couples to hybrid input sensor traces repetitively trigger chip and count hits

expect more hits in channels on bottom of substrate

input channel connectivity testing

15

input channel connectivity testing - chip position A

input channel connectivity testing - chip position B

summary

1st run of five 2xCBC2 hybrid assemblies successful from electrical viewpoint

all chips functional, good uniformity of performance

strong evidence of very high yield of bump-bond connectivity

some redundancy in back end pads but 100% yield of input channel bonds (254 bonds per chip)

← 5 mm →							
	254 amplifier/comparator channels CWD. offset correction and colleration logic	Inter- chip signals pipelir + bufferii •					

11 mn