2S-Pt module systems meeting, CERN, 16th May, 2012.

CBC status and plans

M.Raymond

1

CBC prototype status

no new test results

concentrating now on CBC2 related work

things left to do

radiation tests still outstanding

ionising - would still hope to pursue

single event - leave to CBC2 version?

future for this chip?

we have ~ 600 die (untested) with workarounds they are perfectly usable the only wire-bond version of this archtecture that will exist

can use (this year) to begin development of wafer probe test confirm with CBC2 when available

irradiation test plans - CBC prototype

CBC2 design and submission status

Remaining Schedule

ID	0	Task Name	Duration	Start	Finish	30 Apr '13	07 May '13	14 May '13	21 May '13	28 May '13	04 Jun '13	11 Jun '13	18 Jun '13	25 Jun '13
1		256 channel bump-bondable CBC	43.24 days?	Wed 02/05/12	Wed 27/06/12									
2	111	WIT	4 days	Wed 02/05/12	Mon 07/05/12									
3	111	Input fan in layout	1 day	Mon 07/05/12	Tue 08/05/12		Davide							
4		Memory Fan In Layout	1 day?	Tue 08/05/12	Wed 09/05/12	2	<u> </u>							
5		Double SR readout count	2 days	Wed 09/05/12	Fri 11/05/12	b	- -	Davide						
6	11	Add Extra biases to Bias block	5 days	Fri 11/05/12	Fri 18/05/12			Davi	ide					
7		Add extra registers to I2C	5 days	Fri 18/05/12	Thu 24/05/12				Davide					
8	111	Layout OR Register Control Logic	2 days	Thu 03/05/12	Fri 04/05/12	Marl	k							
9	111	Layout New Hit Detect	2 days	Fri 04/05/12	Tue 08/05/12		Mark							
10	111	Simulate pipeline with command word	3 days	Tue 08/05/12	Fri 11/05/12			Mark						
11		Check Overflow Error Bit Logic	3 days	Fri 11/05/12	Wed 16/05/12	-	(Mark						
12	Ξ.	Bias Monitor Select Mux	5 days	Wed 16/05/12	Tue 22/05/12			<u> </u>	Mark					
13		Check Test Pulse Generator	2 days	Tue 22/05/12	Thu 24/05/12				Mark					
14		Top Level Assembly & Checks	16 days?	Thu 24/05/12	Thu 14/06/12							—		
15	111	Place IO Circuits	2 days	Thu 24/05/12	Mon 28/05/12					Davide				
16	111	Drop in new DC-DC converter	1 day?	Mon 28/05/12	Tue 29/05/12					Davide				
17	111	Place Bandgap & add Output Filter	1 day?	Tue 29/05/12	Wed 30/05/12					Davide				
18	111	Place LDO & add output resistance	1 day?	Thu 24/05/12	Fri 25/05/12				tar	ĸ				
19	11	Place Test Pulse generator	2 days	Fri 25/05/12	Tue 29/05/12				<u> </u>	Mark				
20	111	Top Level Routing	3 days	Wed 30/05/12	Mon 04/06/12						ALL			
21	H.	Top Level Fill	3 days	Mon 04/06/12	Wed 06/06/12						ALL			
22		Top Level DRC	3 days	Wed 06/06/12	Mon 11/06/12						Č	ALL		
23	1111	Top Level LVS	3 days	Mon 11/06/12	Thu 14/06/12									
24	111	Design Review Preparation	2 days	Thu 14/06/12	Mon 18/06/12								ALL	
25	11	Final Design Review	0 days	Tue 19/06/12	Tue 19/06/12								♦ 19/06	
26	<u></u>	Post Review Corrections	5 days	Wed 20/06/12	Tue 26/06/12						1		<u></u>	ALL
27	<u></u>	Submission	0 days	Wed 27/06/12	Wed 27/06/12	2								♦ 27/06
•											/			
											/			
												· Data	have	
											NULE	. Dales	silave	
													-	

shifted by 1 month 6

M Prydderch

Die Arrangement

- Reticles/Wafer ~115
- 1 of each chip per reticle
- Room for test structures.

Joint CMS & XFEL LPD Wafer Submission M Prydderch Plan

- Planned Submission Date: 4/06/2012 Now 27/06/2012
- Wafer Share:
 - 8 Wafers for CMS with C4 finish & Bump balls (leaded)
 - 1 Wafer for Wafer Probe set up
 - 2 Wafer for single chip modules
 - 4 for the multi-chip substrates (assuming 8 chips/substrate & only 67 KGD/wafer gives 8 substrates per wafer allowing 15 full SS-Pt modules from 4 wafers)
 - 1 Wafer contingency
 - 6 Wafers for XFEL LPD with normal finish
 - 4 wafers for TOPFET with normal finish

other CBC2 items

CBC2 architecture

for reference - nothing new here

blocks associated with Pt stub generation

channel mask: block noisy channels (but not from pipeline)cluster width discrimination: exclude wide clustersoffset correction and correlation: correct for phi offset across module and correlate between layersstub shift register: test feature - shift out result of correlation operation at 40 MHzfast OR at comp. O/P and correlation O/P: - can select either to transmit off-chipfor normal operation choose correlation O/P

DC-DC

new version of 2.5 -> 1.2 DC-DC converter (F. Faccio, S. Michelis)

enclosed layout transistors slower transition times for signals to off-chip capacitors substantial reduction in voltage spikes layout compatible with existing version

for details see S. Michelis PWG talk - 26th April

https://indico.cern.ch/getFile.py/access?contribId=1&resId=0&materiaIId=slides&confId=186428

currently waiting for design block - expected soon

what to do with 160 MHz signals

CBC2 pad changes

had to shift interchip digital signal groups one further column to right

solves problems of fitting in ESD protection and pitch adaption

increases separation between input pads and digital signals

Georges notified

planning

dual CBC2 substrate test plans

(no dedicated thoughts yet - below is just previous CBC prototype test items)

baseline performance (conventional (clean) powering scheme)

digital functionality

fast (Ck/T1 - SLVS) & slow control (I2C) interfaces setup and operation **analogue functionality**

amplifier

pulse shape, noise, linearity, overload tolerance, ...

 $C_{\mbox{\scriptsize IN}}$ dependence, signal polarity dependence, across chip & chip-to-chip uniformity leakage current tolerance

comparator

timewalk, threshold tuning and uniformity, hysteresis

all above will depend on bias generator settings => large parameter space to cover power consumption

powering options studies

supply sensitivity with/without various on-chip options

longer term

temperature effects (~ all of above vs. T) tests with sensors radiation: ionizing & SEU sensitivity test beam will try and give more thought to dual substrate test setup and plans for next time

dead time issue

dead-time caused by pile-up

effects of dead-time

simulation results from ~3 meetings ago

random time distribution of hits generated for specific occupancy

SPICE simulated pulse-shapes

Landau distributed amplitudes

get loss of efficiency depending on occupancy

(100% efficient if all hits identified)

shorter pulse shape (with undershoot) gives higher efficiency

~ 100% efficient for 50 ns bunch spacing

efficiency will mostly impact on Pt stub identification

25 nsec / division

but what if don't use "hit detect" ?

just sample the comparator output at the right time appropriate adjustment of this time is important

but 100% efficiency is now possible

can we get this without going for so short a pulse? how long can pulse actually be?

optimal length pulse

intuitively can be seen that optimum pulse shape rises, peaks and returns to baseline within 50 ns (actually what we have in the APV after deconvolution)

if this condition met then pile-up is **not** an issue

=> very fast pulse shape is **not** required (I think)

close-to-optimum pulse shape?

> 100% efficiency explanation

non-optimal sampling

what about undershoot effect?

plot shows frequency of observing a particular separation between hits generated randomly

average interval is 10 (for 10% occupancy) but more likely to see a shorter interval than a longer one

the higher the occupancy the more likely a following pulse will sit on the undershooting tail of the previous pulse

will have a distorting effect on the pulse height distribution

reminder of pulse generation method

3% occupancy

randomly generate time distribution of hits with desired occupancy

for each hit generate an output pulse shape (from SPICE) scaling the amplitude using a value randomly sampled from a "Landau-like" distribution

combine into single data stream

can now re-generate pulse height distribution from single data stream and compare with original Landau ²⁹

undershoot effect on pulse height distributions

unipolar pulse (no undershoot)

"landau" skewed to higher amplitudes

very fast pulse (undershoot)

"landau" skewed to lower amplitudes

"optimum" pulse (undershoot)

"landau" skewed to even lower amplitudes

notes:

these results are for 10% occupancy to exaggerate effect no electronic noise included

dead-time effects summary

further work needed, but

seems as though very fast pulse shape may not be required

return to baseline within 50 ns is sufficient

baseline undershoot does not seem to cause a big effect