
1

CBC deadtime

previously discussed in May 2012 systems meeting

https://indico.cern.ch/getFile.py/access?contribId=0&sessionId=0&resId=0&materialId=slides&confId=191199

repeat some of it here to introduce

add some further information

CMS Tk phase II electronics meeting – March 7th, 2013

22

reminder of issue(1)

0.66

0.64

0.62

0.60

V
o
lt
s

400350300250200150100500

time [ns]

 0.1 uA
 1.1 uA
 2.1 uA
 3.1 uA
 4.1 uA
 5.1 uA

post-amp output pulse
the story up to now

pulse shape longer than single bunch crossing
(can be shortened at expense of undershoot)

=> comparator output high for > 25 nsec

for CBC1 & 2

“hit detect” circuit ensures that only one ‘1’ is loaded
into pipeline

=> when you read out triggered data you don’t
get a spurious hit from a previous BX

but a hit from pile-up signal is lost
=> dead-time

2

comparator o/p

hit detect o/p

comparator i/p
comp.thresh

hit detect ensures only
one hit in pipeline

but hit detect rejects piled up pulse

reminder of issue(2)

very short pulse shape helps

but

input device current increased
160 -> 210 uA

reduced amplitude ~ factor 2

noise increase 890 -> 1200 e

v. sensitive to charge collection time

0.65

0.64

0.63

0.62

0.61

0.60

25 nsec / division

 existing pulse shaping
 speeded up

100

98

96

94

92

90

e
ff

ic
ie

n
c
y
 [

%
]

3.02.52.01.51.00.50.0

occupancy [%]

 50 ns, 0.1 uA
 50 ns, 5.1 uA
 25 ns, 0.1uA
 25 ns, 5.1 uA
25 ns, faster shaping

reminder of issue(3) - optimum pulse shape

44

180

170

160

150

140

130

120

110

100

e
ff

ic
ie

n
c
y
 [

%
]

20151050

sample time [ns]

 5% occupancy
 10% occupancy

0.75

0.74

0.73

0.72

0.71

0.70

0.69

0.68

V
o

lt
s

250x10
-9200150100500

time

< 50ns

but pulse doesn’t have to return to baseline within 25 ns,

only within 50 nsec

can get this pulse shape by tuning existing CBC front end

noise increase ~ 10% over more unipolar shape
=> 800 -> 880 electrons

100% efficiency plateau attainable even for
very high occupancies

unprocessed comparator used (no hit detect)

get >100% in places because sampling comparator
output from same pulse more than once

5

reminder of issue(4)

55

200

150

100

50

0

4003002001000
amplitude [arbitrary units]200

150

100

50

0

4003002001000
amplitude [arbitrary units]

200

150

100

50

0

4003002001000
amplitude [arbitrary units]

effect of “short pulse with undershoot”
on pulse height distribution

unipolar pulse (no undershoot)

“landau” skewed to higher amplitudes

very fast pulse (small undershoot)

“landau” skewed to lower amplitudes

“optimum” pulse (undershoot)

“landau” skewed to even lower amplitudes

but had to generate these data with
10% occupancy! to get an observable effect

original “Landau”
distribution

66

conclusions from last time

further work needed, but

seems as though very fast pulse shape may not be required

return to baseline within 50 ns is sufficient

baseline undershoot does not seem to cause a big effect

77

continuing the story

simulations up to now use realistic pulse shapes from SPICE

but no noise

which will affect efficiency and generate fake hits depending on comparator threshold

have made some additions to simulation to study these effects

200

150

100

50

0

4003002001000
amplitude [arbitrary units]

can position comparator threshold anywhere in this region

have previously used comp threshold of MPV/4

new simulation conditions

occupancy: 2% (pessimistic)

simulated noise added: 1000e

comparator thresholds at 5000e, 4000e, 3000e (5, 4, 3 sigma)

most probable signal level values (MPV):

24,000 e : 300 um sensor
12,000 e : 300 um sensor, charge shared

16,000 e : 200 um sensor
8,000e : 200 um sensor, charge shared

12,000 e : 200 um sensor, radiation damaged
6,000 e ; 200 um sensor, radiation damaged, charge shared

looking at

% of true hits found
hit was randomly generated and subsequently found

% of fake hits found
noise hits found as percentage of total hits found

time domain noise generation in SPICE

CSENS

RPF

CPF

VREF

CC

CF

high R

vn

isig

gaussian white noise noise at amplifier output

signal in

signal out

signal + noise

example - before noise added

MPV = 6000e
threshold = 3000e

no noise added
~ 100% efficient

3000e
thresh

amplifier
output

comparator
output

hit detected

original hit generator

if hit detected corresponds to original hit generated, then “true” hit
6000e
MPV

(note: arbitrary scale units here)

example - after noise added

MPV = 6000e
threshold = 3000e

1000e noise added
~ 98% efficient for true hits
but ~6% fake hits due to noise

if hit detected doesn’t corresponds to original hit generated, then “fake” hit

results so far

“Landau”

MPV

5000e threshold 4000e threshold 3000e threshold

% true
hits

% fake
hits

% true
hits

% fake
hits

% true
hits

% fake
hits

24,000e 100 0 100 0.24 100 7.2

12,000e 99.8 0 99.8 0.24 100 5.7

16,000e 100 0 100 0.24 100 7.6

8,000e 95.0 0 98.6 0.24 99.8 5.1

12,000e 99.8 0 99.8 0.24 100 5.7

6,000e 80 0 91.1 0.26 97.4 5.4

good efficiency and low fake rate for signal MPV > 8,000e and thresholds of 4000e
8000e MPV @ 5000e threshold -> low efficiency for true hits

6000e MPV altogether too low -> low efficiency for true hits at any reasonable threshold

3000e threshold too low -> fake rate too high

conditions

1000e noise

2% occupancy

20,000 bunch crossings

=> ~ 400 hits
=> statistics not huge
(limited by simulated

noise waveform length)

statistical effect - fakes
due to noise shouldn’t
depend on signal size

300um

200um

200um
+

damage

extra

slides from previous talk follow

14

dead-time caused by pile-up
the story up to now

pulse shape longer than single bunch crossing
(can be shortened at expense of undershoot)

=> comparator output high for > 25 nsec

for triggered readout

use “hit detect” circuit to ensure that only one
‘1’ is loaded into pipeline

=> when you read out triggered data you don’t
get a spurious hit from a previous BX

but a hit from pile-up signal is lost
=> dead-time

0.66

0.64

0.62

0.60

V
o
lt
s

400350300250200150100500

time [ns]

 0.1 uA
 1.1 uA
 2.1 uA
 3.1 uA
 4.1 uA
 5.1 uA

comparator o/p

hit detect o/p

comparator i/p

post-amp output pulse

comp.thresh

hit detect ensures only
one hit in pipeline

but hit detect rejects piled up pulse

1515

100

98

96

94

92

90

e
ff

ic
ie

n
c
y
 [

%
]

3.02.52.01.51.00.50.0

occupancy [%]

 50 ns, 0.1 uA
 50 ns, 5.1 uA
 25 ns, 0.1uA
 25 ns, 5.1 uA

effects of dead-time

simulation results from ~3 meetings ago

random time distribution of hits
generated for specific occupancy

SPICE simulated pulse-shapes

Landau distributed amplitudes

get loss of efficiency depending on occupancy

(100% efficient if all hits identified)

shorter pulse shape (with undershoot) gives higher efficiency

~ 100% efficient for 50 ns bunch spacing

efficiency will mostly impact on Pt stub identification

1616

shorter pulse shape?

0.65

0.64

0.63

0.62

0.61

0.60

25 nsec / division

 existing pulse shaping
 speeded up

results from ~2 meetings ago

pushing existing front-end hard
(very preliminary study)

input device current increased
160 -> 210 uA

reduced amplitude ~ factor 2

noise increase 890 -> 1200 e

10 ns charge collection in sensor assumed
(will be sensitive to this)

but efficiency improved

100

98

96

94

92

90

e
ff

ic
ie

n
c
y
 [

%
]

3.02.52.01.51.00.50.0

occupancy [%]

 50 ns, 0.1 uA
 50 ns, 5.1 uA
 25 ns, 0.1uA
 25 ns, 5.1 uA
25 ns, faster shaping

17

0.65

0.64

0.63

0.62

0.61

0.60

25 nsec / division

 existing pulse shaping
 speeded up

why is short pulse shape not 100% efficient?

can understand basic behaviour
using crude triangular approximation to pulse shape

ignore undershoot for now (will come back to later)

comparator o/p

hit detect o/p

comparator i/p

but hit detect rejects piled up pulse
hit detect ensures only

one hit in pipeline

1818

but what if don’t use “hit detect” ?

comparator o/p

sampled comp o/p

comparator i/p

just sample the comparator output at the right time

appropriate adjustment of this time is important

but 100% efficiency is now possible

can we get this without going for so short a pulse?

how long can pulse actually be?

sample time

100

98

96

94

92

90

e
ff

ic
ie

n
c
y
 [

%
]

20151050

 sample time [ns]

results for 5%
occupancy

possible to miss
comp. o/p

altogether if
don’t sample at
the correct time

1919

optimal length pulse

comparator o/p

sampled comp o/p

comparator i/p

intuitively can be seen that optimum pulse shape rises, peaks and returns to baseline within 50 ns
(actually what we have in the APV after deconvolution)

if this condition met then pile-up is not an issue

=> very fast pulse shape is not required (I think)

sample time

2020

close-to-optimum pulse shape?

180

170

160

150

140

130

120

110

100

e
ff

ic
ie

n
c
y
 [

%
]

20151050

sample time [ns]

 5% occupancy
 10% occupancy

0.75

0.74

0.73

0.72

0.71

0.70

0.69

0.68

V
o

lt
s

250x10
-9200150100500

time

< 50ns

can get this pulse shape by tuning existing CBC front end

(note: noise increase ~ 10% over more unipolar shape

but maybe we can live with that)

100% efficiency plateau attainable even for
very high occupancies

get >100% in places because sampling comparator
output from same pulse more than once

21

> 100% efficiency explanation

optimal sampling non-optimal sampling

2222

what about undershoot effect?

10 % occupancy

example

250

200

150

100

50

0

n
o
.

o
f

ti
m

e
s
 o

b
s
e
rv

e
d

50403020100
separation between hits [BX]

plot shows frequency of observing a particular separation

between hits generated randomly

average interval is 10 (for 10% occupancy)

but more likely to see a shorter interval than a longer one

the higher the occupancy the more likely a following pulse will
sit on the undershooting tail of the previous pulse

will have a distorting effect on the pulse height distribution

2323

200

100

0

m
V

25x10
320151050

nsec.

200

100

0

m
V

25x10
320151050

nsec.

unipolar

pulse

shape

pulse

shape

with

undershoot

3% occupancy

reminder of pulse generation method

randomly generate time distribution of hits with desired occupancy

for each hit generate an output pulse shape (from SPICE) scaling the amplitude using a value randomly sampled
from a “Landau-like” distribution

combine into single data stream

can now re-generate pulse height distribution from single data stream and compare with original Landau

2424

undershoot effect on pulse height distributions
200

150

100

50

0

4003002001000
amplitude [arbitrary units]200

150

100

50

0

4003002001000
amplitude [arbitrary units]

200

150

100

50

0

4003002001000
amplitude [arbitrary units]

unipolar pulse (no undershoot)

“landau” skewed to higher amplitudes

very fast pulse (undershoot)

“landau” skewed to lower amplitudes

“optimum” pulse (undershoot)

“landau” skewed to even lower amplitudes

notes:

these results are for 10% occupancy
to exaggerate effect

no electronic noise included

original “Landau”
distribution

2525

dead-time effects summary

further work needed, but

seems as though very fast pulse shape may not be required

return to baseline within 50 ns is sufficient

baseline undershoot does not seem to cause a big effect

