8CBC2flex test results update

results from screening 2 bump-bonded hybrids 1 underfilled, 1 not

main objective to verify functionality - looking for anything that might indicate failure of bump-bonding process

repeat of tracker week talk + few extra slides

systems meeting, 3rd June 2014

chip numbering (for reference)

top si	urface	wire	bond	pad	array
	and the second se			and the second second	and the second second

US2

chip ID	I2C address (hex)
A0	0x41
B0	0x42
A1	0x43
B1	0x44
A2	0x45
B2	0x46
A3	0x47
B3	0x48

chips identified as pairs A/B, like 2CBC2 hybrid

CBC channel number mapping (for reference)

=> longer tracking distance from wirebond pad to CBC input

input channel connectivity testing

goal is to verify all channels connected via bump to wire-bond pad array

important given experience with 2CBC2 hybrids

inject charge using on-chip test pulse

=> look at output data frame => verify channel is working

place grounded probe needle on wire-bond pad

if connection good then input FET turned off and output signal disappears

repeat for all 2032 channels on hybrid!

input channel connectivity testing

results

all channels on both hybrids alive and connected to wire- bond pads arrays

measured power parameters

all chips powered from digital 1.2V VDDD rail

analogue powered via LDO 1.2 V VDDD in / 1.1 V VDDA out current measured in VDDD rail

if clock chip but set all analogue bias values to zero baseline current ~ 6mA / chip (~ 50mA total) (digital + quiescent analogue)

now program analogue biases to nominal values

IPRE1 = 35 (suitable for no external capacitance) IPRE1 = 240 (appropriate for 5 cm strips)

nominal I2C bias values				
IPRE1* IPRE2 IPSF IPA IPAOS VPAFB ICOMP VPC	35/240 20 45 30 45 0 30 74			
VPLUS	100			

current ~ 34 mA / chip for IPRE1=35 ~ 70 mA/ chip for IPRE1=240

no surprises and no problems only ~10 mV droop in VDDD across hybrid for IPRE1=240

(*IPRE1 needs to be chosen appropriately, depending on sensor capacitance)

s-curves

individual channel comparator offsets tuned (electrons mode) using recommended procedure

(see Kirika's talk)

=> pedestal s-curves mid-points at VCTH = 120

s-curves taken using internal test pulse gives approximate gain measurement

> test pulse amplitude [I2C units] \sim 12 / fC ~ 2.5 mV / VCTH I2C unit => gain ~ 45 mV / fC

raw s-curve data shows effects of comparator threshold non-linearities

particularly obvious for test pulse amplitude 6 in this example

plan to improve VCTH linearity in next version of chip

s-curves raw data: all chips

noise

2.5 -

2.0

1.5

1.0

0.5

0.0

0

rms VCTH units

noise obtained from erfc fit to raw s-curve data

ᢉ᠇ᠽᢧᢧᢧᡀᠧᡃᡅᠧᡀ

interesting to sort into channels corresponding to top and bottom wire-bond pad arrays

top channels

noise dependence on VCTH non-linearity

noise dependence on VCTH non-linearity

noise vs. chip position

average noise over all top/bottom channels for all s-curves (all test pulse amplitudes) for each chip

trying to minimise effect of non-linearities

seems to show slightly higher noise for right hand half of hybrid

likely due to higher capacitance in this area

ground plane extended here to investigate possible beneficial effect on signals (in principle reduces coupling between signal tracks on hybrid)

1.5

1

0.5

0

A0

B0

A1

A2

B1

bottom layer w/b pads

A3

B3

top layer w/b pads

B2

some extra observations on VCTH (2)

diff. non-linearity >> 1 I2C unit

summary

2 8BCB2flex hybrids tested: 1 underfilled, 1 not

no functionality problems found, 100% channels working

100% connectivity verified between chip inputs and wire-bond pads