CBC3 status

Mark Raymond

recent update from Mark Prydderch in Tracker week (29/1/15)

can't add much today, but

some progress on front end amplifier

CBC3 hit detect functionality

systems meeting, 24th February, 2015.

preamp/postamp

- remove polarity option
- faster pulse shape (return to baseline within 50 nsec)
- increase input device current programmable range (capability to cope with larger input capacitance)
- 1V VDDA operation

postamp/comparator

fix CM stability issue
 balance comparator current
 re-visit postamp feedback biasing

front end amplifier

have made adjustments for:

- VDDA = 1V from LDO
- capability to run with higher current
 in input transistor
- shorter overall pulse shape

consequences are:

- optimal performance for electrons
 mode only
- AC coupling to sensors (can still sink ~500nA)

status

Graph27 (V) : t(s) 0.55 v(npa4) 50 nsec v(npa4) 0.5 v(npa4) v(npa4) 0.45v(npa4) postamp O/P v(npa4) 1 - 5 fC signal 0.4 v(npa4) (V) v(npa4) 0.35 v(npa4) v(npa4) 0.3 0.25 0.0 25n 50n 75n 100n 125 n 150n 200n 175n 225 n 250n

work in progress, but all specifications seem achievable ~50uW power increase to keep noise within spec. 300uW for CBC2 -> 350uW for CBC3

will report in more detail when design finished

postamp output pulse shape all process corners, T = +30 and -10 Cin = 8pF noise ~ 1000e power ~350uW (preamp + postamp)

have spent some time understanding required functionality of hit detect circuit for CBC3

(the circuit that captures the comparator output and feeds both correlation logic and pipeline)

CBC3 pulse shape peaks at ~15-20 nsec and falls back to baseline by ~50 nsec

need full efficiency for single pulse that only just exceeds threshold, as well as piled up pulses

=> need OR of CBC2 hit detect and sampled comparator output

other circuitry progress

further layout work to match stub gathering logic to correlation logic now ~complete

stubs overflow flag (>3 stubs) added (will appear in output data)

existing I2C logic: double checking for SEU conditions (issue raised last time)

some bias generator work

R	R	R	R	R	R	R	R
B 3	B 3	B 3	B 3	(SoF)	?	?	Sync
B1	B1	B1	B1	B2	B2	B2	B2
S 3	S3						
S2	S2						
S1	S1						

submission

MOSIS MPW schedule has submssion dates November 16th 2015, February 16th 2016

November date looks tight, February now probably more likely

extra

(Mark Prydderch's slides from Tracker week talk)

CBC3 Architecture

Stub Logic

- Programmable cluster widths of up to 4 (>4 are rejected)
- Offset Correction programmable in 4 domains across chip with +/- 3 strips adjustment range
- Window +/- 7 strips, ¹/₂ strip resolution. 1 Stub/window (highest Pt)
- $\frac{1}{2}$ strip resolution \rightarrow 8 bit stub address
- 5 bit bend information

CBC3 Stub Gathering Logic

CBC3 Bend Look-Up Table

CBC3 Data Readout

S = Cluster address (1/2 strip resolution)
B = Bend data
SoF = Stub Overflow (>3 Stubs)
? = Spare/To be defined
Sync = For synchronisation with CC
R = Triggered readout data (remains unsparsified)

Six differential (SLVS) outputs running at 320 Mbps

CBC3 Triggered Data Format

NOTE: Existing buffer length of 32 is sufficient for very low inefficiency at 1 MHz rate

CBC3 SRAM

Miscellaneous

Fast Command Interface: Fast Reset, Trigger, Test Pulse Trigger, L1 Counter Reset

Biases: VCTH to be monotonic & 1 mV resolution (10 bit); Modify IREF so that Ibias is related to GND rather than VDDA.

I2C register SEU immunity: Modify registers to improve immunity

Clock domains: DLL with programmable tap off for all of 40 MHz domain

Powering: 1.2V VDDD +/- 10%; no switched cap DC-DC; LDO modified to cope with minimum VDD

40MHz Test Mode: To allow testing at 40MHz on Wafer Prober

Pad Pitch: As for CBC2