CBC3 first results

systems meeting, 16th December, 2016.

VME test setup

scope picture of L1 triggered data

differential probe close to chip output, scope on persistence

CBC3 4

CBC3 I2C front pan	write and readall	(YES)	bus speed	5 5 5 1101 12C d	s 1110 Ione	status no error	code 3600	
	•						source	
	г	nilliseconds to wait			comparator	hysteresis		
	0	0		Value to writ	e min hystere: page CompPol = buttons o	sis beta M triglat ut reset MSB (/alue read bar	decimal value
observations	C Register(page 1 fixed)	NOP	▼	b1000000	1 elecs CH3 CH2 (CH1 CH0 off zero	Þ1000000	d64
	Latency Register	NOP	▼	d <mark>32</mark>	Beta multiplier	SLVS current	b100000	d ₃₂
"auita" complicated more so than CDC2	beta multiplier & SLVS	NOP	~	ь10000111	B3 B2 B1 B0	B3 B2 B1 B0	b10000111	d 135
quite complicated - more so than CBC2	IPRE1	NOP	▼	4 50	discremency		Þ110010	₫50
	IPRE2(CASC)	NOP	V	120		mparator Hysteresis	b1111000	d120
relatively easy to get a bit set wrongly some	ewhere PSF	NOP	▼	d130	· · · · · · · · · · · · · · · · · · ·	11 = minimum	b10000010	d130
	IPA	NOP		■ d210	discrepancy only valid	VS current 100 = maximum	b11010010	4210
CLIL holds to spot incorrect setting	IPAOS	NOP			if write and read all		b10100	420
GOT helps to spot incorrect setting		NOP		이야이 이번 특 세기			P1011010	4110
	HIP & Test Mode	NOP	T	count 🖣 d0	suppress disabled con		b1000	48
not just a list of addresses					Test Pulse amplitude		-1000	-0
& data values	TP Pot Node Select	NOP	•	Þ10110111	72		b10110111	183
	TP Del & Test Chan Grp	NOP	•	b11100000	test pulse delay 🎒 7	test chan group 🗿 🛛	b11100000	d224
	TP Cntrl & Analogue Mux	NOP	•	b1100000	elecs En Gnd	Analogue Mux Setting	b1100000	4 <mark>96</mark>
					4 3 2	1 0 nowt		
	CAL_I	NOP	•	a240			b11110000	d240
	CAL_VCASC	NOP	•	🛊 d <mark>63</mark>	11 = fixed pulse width		b111111	d <mark>6</mark> 3
					01 = OR of above 10 = HIP suppressed	Pt width		
Pipe/Stub	logic I/P select & Pt width	NOP	▼	ь11	B1 B0 B1 B0 Pipeline Stub logic	B3 B2 B1 B0	ь11	d3
	Coinc, Win, O/S4&3	NOP	•	b <mark>11111111</mark>	offset 4 쉬 15 🛛 0	ffset 3 🍦 15	ь11111111	₫255
	Coinc, Win, O/S 2 & 1	NOP	•	ь11111111	offset 2 쉬 15 🛛 0	ffset 1 🌐 15	b <mark>11111111</mark>	d <mark>255</mark>
La	yer Swap & Cluster Width	NOP	~	Þ100	Lswap=0 C Width	2 4	Þ100	d <mark>4</mark>
	40 MHz Clock & OR254	NOP	•	Þ10110011	TPG Ck sel EN_OR254 1 = normal OFF C	Ck40 DLL 25 0 test 0=bypass	Þ10110011	d179
Fast CI	MD Interface & error flags	NOP	erro	▶0 or flags mea	FCI delay 0 Error Flag ning: Buffer RAM overflow /	s DOOOOO	ь <mark>0</mark> Sync stat / Ba	⊲0 id code
	VCTH	NOP	•	ь <u>1000</u> ь10	VCTH 2	VCTH read back	▶1000 ▶10	d8 /d2

error out

status

other control panels

channel offsets

channel mask

bend LUTs

bus speed 🔵 5

Waveform Graph 170 16 150 -140-130 B 12

50

write ar Version ar Wersion ar CBC ar CBC ar (bina Version ar Version ar Ver	ddress) ddress ry) 1111		n	nask_c 1111	han_a 11	idd Valu 11	je reac	d	
bus spe discre	ed 👌	1	stat	or out cus error rce		de 500		I2C done 1 status 1101110	
						_		0 = unmasked	
								1 = masked (inverted internally)	
								Array to write Array read back	
8	7	6	5	4	З	2	1	÷11111111 • (ð
16	15	14	13	12	11	10	9	\$•11111111 • (D
24	23	22	21	20	19	18	17	\$•11111111 • (0
32	31	30	29	28	27	26	25	• 11111111 • (0
40	39	38	37	36	35	34	33	\$•11111111 • (0
48	47	46	45	44	43	42	41	\$•11111111 • (0
56	55	54	53	52	51	50	49	• 0 • 11111111	1
64	63	62	61	60	59	58	57	• 0 • 11111111	1
72	71	70	69	68	67	66	65	↓ 0 • 111111111	1
80	79	78	77	76	75	74	73	• 0 • 11111111	1
88	87	86	85	84	83	82	81	• 0 • 11111111	1
96	95	94	93	92	91	90	89	↓ 0 • 11111111	1
104	103	102	101	100	99	98	97	• 0 • 11111111	1
112	111	110	109	108	107	106	105	\$► 0 ►11111111	1
120	119	118	117	116	115	114	113	\$•11111111 • (0
128	127	126	125	124	123	122	121	•11111111 • (0
136	135	134	133	132	131	130	129	•11111111 • (0
144	143	142	141	140	139	138	137	•11111111 • (0
152	151	150	149	148	147	146	145	• 11111111 • (D
160	159	158	157	156	155	154	153	\$•11111111 • (D
168	167	166	165	164	163	162	161	\$•11111111 • (D
176	175	174	173	172	171	170	169	\$•11111111 • (D
184	183	182	181	180	179	178	177	÷11111111 • (D
192	191	190	189	188	187	186	185	÷11111111 • (D
200	199	198	197	196	195	194	193	÷11111111 • (D
208	207	206	205	204	203	202	201	÷11111111 • (D
216	215	214	213	212	211	210	209	•11111111 • (D
224	223	222	221	220	219	218	217	•11111111 • (D
232	231	230	229	228	227	226	225	•11111111 • (D
240	239	238	237	236	235	234	233	•11111111 • (D
248	247	246	245	244	243	242	241	• 1111111 • 5 (D
-	-	254	253	252	251	250	249	↓ 111111 • 11000000	0

running the chip

many things to set up correctly

user manual will explain draft exists - not ready for circulation yet

spec. document already goes some way

test pulse allows to exercise most features

same as CBC2 - arrangement of channels allows to generate stubs

can limit number of stubs generated using channel mask

running the chip example

example here shows activity on 6 output lines for 3 stubs generated

note: no bend information, because test pulse fires channels directly above each other (seed channel and channel in centre of window => bend = 0)

zooming in

test pulse timing set up so that hit confined to one timeslot

stub addresses 16 channels apart as expected from test pulse

only get even stub addresses as odd values require adjacent hits on the same layer (test pulse can't do that)

now unmask another pair of channels to generate a 4th stub

4 stubs

stub overflow bit set in SLVS<5>

4 pairs of channels in triggered data stream

everything appears to be working - can programmatically sweep test pulse through all channels and check to see all stub addresses present

sweep single stub through all channels

channel pair fired by test pulse (127 channel pairs altogether)

stub address sweeps between 2 and 254

2 stub addresses not correct

get 218 instead of 106 196 instead of 226

=> get address 218 and 196 twice

can also get bend inf

test pulse fires seed layer channel and window layer channel immediately above

ь10

should see non-zero bend value

d2

ь10

1520

3 stubs + bend data

setting window offsets

bend data now appears in the expected locations

choose window offsets appropriately

for example to see bend values of

0, 1, 2, 3 (decimal)

program window offsets to

0, 14, 12, 10

Coinc. Win. O/S 4 & 3	NOP	▼ ▶10101100	offset 4 쉬 10	offset 3 🍦 12	▶10101100 d172
Coinc. Win. 0/52&1	NOP	► 11100000	offset 2 쉬 14	offset 1 🔵 0	▶11100000 d224

desired offset [strips]	value to program [decimal]	bend value expected for test pulse hits [binary]
-3	6	1101
-21⁄2	5	1101
-2	4	1110
-1½	3	1110
-1	2	1111
-1/2	1	1111
0 (centre)	0	0000 <mark>(0)</mark>
+1⁄2	15	0000
+1	14	0001 <mark>(1)</mark>
+1½	13	0001
+2	(12)	0010 <mark>(2)</mark>
+21⁄2	11	0010
+3	10	0011 (3)

sweep stub again

sweeping single stub through all channel pair locations

see 4 groups of channels with expected bend values

but one channel not returning expected bend value

same channel that also returns incorrect stub address

explanation of incorrect stub addresses & bend

• Verilog code for the Stub Gathering Logic has some typos that slipped through the checking process.

Extra 1 appended to 7-bit address, so truncation occurs

- These channels can be masked on the existing chips and if necessary/desirable the issue can be corrected with a metal-mask-only change.
- We will review how this occurred and tighten-up our procedures to prevent future occurrences. ¹⁵

force continuous stub generation

set VCTH threshold so all channels constantly firing

selectively unmask channels to generate clusters

3 x 4 strip seed and window clusters

can use this technique to generate fixed pattern in SLVS output lines also to verify cluster width discrimination logic, Pt window width logic, layer swap, ... (principle proven - exhaustive check not yet implemented)

Ck40 test		write and readall CBC address (binary)	(YES)	bus speed	€)5 S	tatus 1101110 2C done 51	error out status no error source	code 3600
can switch output of DLL to a test pad	Ő	nilliseconds to wait O	<u>v</u>	/alue to write	compar min hys page CompPol = butto	ator hysteresis teresis beta M triglat ns out reset MSB	/alue read bag	decimal value
	FEC Register(page 1 fixed)	NOP		1000000	1 elecs CH3 CH	12 CH1 CH0 off zero	ь1000000	d64
test feature only - to verify DLL perform	ANCE Latency Register	NOP		432	Beta multiplier	SLVS current	b100000	d32
, see the second s	beta multiplier & SLVS	NOP		10000111	B3 B2 B1 E	80 B3 B2 B1 B0	ь10000111	d135
	IPRE1	NOP	_	450	discrepancy		b110010	₫50
for normal operation leave OFF	IPRE2(CASC)	NOP	▼.	₫ 120		Comparator Hysteresis	b1111000	d120
	IPSF	NOP	T	d130		1111 = minimum	Þ10000010	d 130
	IPA	NOP		d210		SLVS current 0000 = maximum	b11010010	₫210
	IPAOS	NOP		₫ 20	if write and read all		Þ10100	₫20
		NOP	•	d90			ь1011010	d90
	VPLUS/VPLUS2	NOP	– 1	VPLUS 🖥 🖣 🖓	VPLUS2	combined b1110111	b1110111	d119
	HIP & Test Mode	NOP	▼	count 🛱 🕸	suppress disabled	source sampled SLVS ON	ь1000	d <mark>8</mark>
				_	Test Pulse amplitud	de		_
	TP Pot Node Select	NOP	T	b10110111	72		b10110111	d 183
	TP Del & Test Chan Grp	NOP	▼	ь11100000	test pulse delay 🍎 7	test chan group 🔴 0	b11100000	d <mark>224</mark>
	TP Cntrl & Analogue Mux	NOP	–	Þ1100000	elecs En Gnd	🕘 0 🛛 Analogue Mux Setting	b1100000	d <mark>96</mark>
					4 3 2	1 0 nowt		
	CAL_I	NOP	▼ ;	4240	00		b11110000	d <mark>240</mark>
	CAL_VCASC	NOP	;	d <mark>63</mark>	11 = fixed pulse wi	idth	b111111	d <mark>6</mark> 3
					01 = OR of above 10 = HIP suppress	ed Pt width		
Pipe/	Stub logic I/P select & Pt width	NOP	V	Þ <mark>11</mark>	B1 B0 B1 Pipeline Stub lo	BO B3 B2 B1 B0	b11	q <mark>3</mark>
	Coinc, Win, O/S 4 & 3	NOP	V	b11111111] offset 4 쉬 15	offset 3 쉬 15	b11111111	d255
	Coinc. Win. O/S 2 & 1	NOP	_	ь11111111	offset 2 쉬 15	offset 1 🍎 15	b11111111	d <mark>255</mark>
	Layer Swap & Cluster Width	NOP	-	ь100	Lswap=0 CW	idth 👌 4	b100	d <mark>4</mark>
	40 MHz Clock & OR254	NOP		ь10110011	TPG Ck sel EN_OP2	Ck40 DLL ON Ck40 test Ck40 test	b10110011	d179
F	ast CMD Interface & error flags	NOP		ÞΠ	1 0 Error	Elags	ÞD I	4 <mark>0 </mark>
	and and another of other hags		erro	r flags mean	ing: Buffer RAM overfi	w (Latency Error (Sync lost (Sync stat / Ba	ad code
			0110	aga moan	ang, bantor tener overhi			

VCTH	NOP	▼ b1000	Allena	VCTH read back	Þ1000	- 8
		Þ10	VCTH 2 70520	d 520	٥ <u>10</u>	1742

Ck40 test

scope on infinite persistence

select Ck40DLL taps one at a time

small difference between 25 nsec delay and bypass due to different signal path lengths

deviation from specification

conclusions on digital functionality so far

chip is working well

a few bugs (that will have to be fixed) but nothing disastrous

plenty left to test ...

move now onto some analogue results

main analogue changes from CBC2

bandgap and VDDA

bandgap has 6 bits tuning register to compensate for process variations

once value is chosen, can blow fuses to store it as default

e-fuse operation not yet looked at

LDO provides VDDA

value = 2x bandgap

LDO clearly working, but no detailed studies yet

VCTH

VCTH now generated by 10-bit resistor ladder DAC

~ 1 mV resolution (~ 150 electrons)

bias currents

other current biases also ok

IPRE1 (main source of current in input transistor) now has ~3x fullscale range compared with CBC2

=> can cope with larger sensor capacitance

scurves and tuning

can s-curves be acquired for all channels simultaneously?

not without some distortion

~12 mA increase in VDDD current consumption during period of maximum channels firing activity

but should work better when chip is bump-bonded

=> promising for antenna tests on hybrids

hit detect cct tests

Pipe Select (2 Bit)

hit detect sensitive to short pulses that only exceed comp. thresh. for short period between clock edged

-> Fixed Pulse Width

also performs simple 40 MHz sampling

-> 40 MHz Sampled Output

combining the two by simple OR gives efficiency for piled up pulses without inefficiency for smaller signals

2 separate multiplexers gives flexible choice of which signals can be fed to pipeline and stub logic

(for normal operation choose OR output to both **and** enable HIP suppression)

hit detect cct tests

verify operation using test pulse, sweeping test pulse trigger in 25 nsec steps, using test pulse DLL to give finer steps of 1 nsec.

pictures here for test pulse amplitude of 60 (decimal), $\sim 5 \text{ fC}$

test pulse sweeps

use test pulse to look at signal duration

test pulse amplitudes approximate only

VCTH set to ~ 1.25 fC

pulse width ~ ok for nominal postamp feedback settings

test pulse sweeps

adjustment of pulse width possible using post-amplifier feedback value VPAFB

result for minimum resistance

(TP value of 12 = 1 fC)

get ~ 40 mV / fC

test pulse amplitude 32

power

digital power higher than hoped

for VDDD = 1.2V measure 33.6 mA, equivalent to 160 uW / channel

(if switch SLVS drivers off get 20.7 mA)

=> overall chip power goes to ~ 510 uW/channel, unless sacrifice some analogue power

note: analogue power calculations based on 1.2V (not 1.25)

CBC3 spec. "The target power consumption for 5cm strips (~8pF) is 450 μ W/Channel, assuming 350 μ W/Channel analogue and 100 μ W/Channel digital power consumption."

yield

1st batch of 9 chips bonded

5 ok, 4 had problems

3 drew no power, showed no activity 1 drew high current

2nd batch of 9 chips

all ok (power, I2C ok, produce data)

summary

still early days, but CBC3 is working

some digital issues to work around, but nothing to stop progress

analogue front end appears ok

more to investigate, but need to bump-bond and connect to sensors to get true performance

SEU & ionizing irradiation test procedures can now be developed based on wirebonded single chip setup

next priority to develop wafer probe test

short term schedule on next page

CBC3 test plan outline (continues to evolve)

	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	July	Aug
CBC3 submitted					1 st ch	ips								
6 wafers out of fab,	send 2	for di	cing	\odot	under	test			vpoot				 	
wire	-bonda	ble chi	ips in I	hand	٨		l	to u	inderta	ake SE	U and			
			V	vire-bo + in + can st SEU & ising F (need	ond chip terface VME D tart to c & ionizi C7 bas suitabl	o carri card AQ levelop ng tes sed DA e FMC	er ⓒ t, ↓Q ← ↓) ← - (ioi Kirika San use	nizing 1 st h & Gec e CBC	tests d alf 201 org & S 2 FMC	uring 7 Sarah			
Ę	send (s	ome) v	vafers	for bu	mping		← (choice	ofven	dor?				
			bum	ped w	afers ir	hand					ler	ngthen	ed to	<u>.</u>
	prob	e-test	bump	ed waf	er, sen	d for d	licing				/~	12 We	eks	
bump-bondable	chips iı	h hand	, send	to hyb	orid co.	for bu	mp-bo	nding			×			
					СВС	3 chip	s on 2	CBC3 ł	nybride	unde	r test			
							I		1 st 2Cl	BC3 m	ini-moo	dule?		
				region			- -	2CBC	↑ 3 hyb	rid		s	▲ uitable for 2	sensors CBC3?
									2CB FC (C3 hyb 7 base need s	orid inte ed 2CB suitable	erface C3 D/ FMC	card AQ)	36

extra

CBC3 digital interfaces	\uparrow	S1<7>	S2<7>	\$3<7>	B2<3>	Sync	R	
Oboo digital internaces		S1<6>	S2<6>	S3<6>	B2<2>	Error	R	
output data: up to 3 stubs data transmitted to CIC/BX	\longrightarrow	S1<5>	S2<5>	S3<5>	B2<1>	OR254	R	
6 SLVS diff pairs @ 320 Mbps	25 ns	S1<4>	S2<4>	S3<4>	B2<0>	SoF	R	
	20110	S1<3>	S2<3>	S3<3>	B1<3>	B3<3>	R	
		S1<2>	S2<2>	S3<2>	B1<2>	B3<2>	R	
		S1<1>	S2<1>	S3<1>	B1<1>	B3<1>	R	
readout data		S1<0>	S2<0>	S3<0>	B1<0>	B3<0>	R	
readout data frame length 950 nsec => up to 1 MHz L1 triggering capability	R = L1 triggered readout data time flow <u>top</u> to <u>bottom</u> (e.g. S1<7> output fin							
:						:		

