Wrap-up: CBC3 X-ray Irradiation

G. Auzinger, J. Goldstein, G. Hall, M. Raymond, S. Seif El Nasr - Storey, K. Uchida

Wrap-up : CBC3 X-ray Irradiation

Latest irradiation : May 2017

- CMS
- Received one week of beam time with X-ray machine in May of 2017, time was used to :
 - check dosimetry for different distances of the tube from the sample
 - using a calibrated PIN diode provided by ESE [1 nA increase in dark current equivalent to 1.373 kRad/h]
 - confirm that leakage is more prominent in regions of the chip with non-enclosed NMOS (stub logic)
 - Irradiated 2 chips, with stub logic exposed/shielded, at -19° and a high dose rate
 - repeat dose rate scan (at a bias of 1.25 V) at an elevated temperature [@ $5^{\circ}C$]
 - + 0.1 kGy/hr , 5 kGy/h , 10 kGy/h , 20 kGy/h

Explored Parameter Space CBC3 TID March - April 2017

	20 kGy/ h	10 kGy/ h	2 kGy/h	5 kGy/h	0.5 kGy/ h
20 °	03/2017				
0 °				04/2017	
-5	03/2017		03/2017	04/2017	03/2017* *
-20 °	04/2017	04/2017		04/2017	04/2017

Wrap-up : CBC3 X-ray Irradiation Measured dose rate at different distances from the CERN X-ray source

- Check dosimetry for different distances of the tube from the sample
 - using a calibrated PIN diode provided by ESE-MIC [1 nA increase in dark current equivalent to 1.373 kRad/h]

- Hypothesis was that leakage is caused by the large number of linear NMOS transistors used in the logic of the CBC3
 - 2 chips irradiated (different masks) at -19°C and 20 kGy/h

• Results consistent with hypothesis!

Wrap-up: CBC3 X-ray Irradiation

Dose rate scan at +5°C and 1.25 V

• Explored parameter space extended by repeating the dose rate scan performed over Easter at a higher temperature

• 4 chips irradiated at +5°C

• Dose rate dependance and temperature dependance as expected

Enough information collected to place a (conservative) upper limit on the expected magnitude of the current increase in a 2S module under HL-LHC operating conditions.

0.1

0.001

0.01

0.1

Dose Rate [kGy/h]

- accomplished by fitting a mathematical model to the measured increase in current
- model based on known radiation damage effects in CMOS (build up of fixed positive charge in the STI + creation of interface traps along the Si-SiO2 interface)
 - extension of ATLAS FeI4 damage model

-15

-20

10

Wrap-up : CBC3 X-ray Irradiation Results of fit to individual chips (-19°C)

- Modified damage model used to fit current increase for all chips irradiated at -19°C
 - can see that already with the individual fits that parameters related to the production of interface traps are not dependent on dose rate (consistent across all chips)

• Next step is to try and fit all chips simultaneously, keeping parameters related to interface trap production fixed.

Wrap-up : CBC3 X-ray Irradiation Results of combined fit to CBC3 data (-19°C)

 Modified minimization function used to simultaneously fit current increase for all chips irradiated at -19°C

CMS

Wrap-up : CBC3 X-ray Irradiation

Predicted increase in current consumption of CBC3

- Know that lowest expected temperature on the 2S modules is $\sim -15^{\circ}C$
 - measured that the current increases with decreasing temperature
 - can use results from irradiations at -19°C and 5°C to set bounds on the expected increase per CBC for a 2S module

Predicted increase in digital current (upper limit from fits to measurements performed at 23, 11.6, 5.8, 0.1 kGy/h)

Wrap-up : CBC3 X-ray Irradiation Impact on power consumption of 2S Modules

- Want to understand the effect the expected current increase due to damage from ionizing radiation will have on the power consumption of a single 2S module
 - max. expected current increase in CBCs would increase power consumption of a 2S module by *approximately 20 mW* (x16 CBCs per 2S module)
 - corresponds to a 0.4 % increase in power consumption per module
 - 0.5 % increase if DC-DC converter is not considered

Wrap-up: CBC3 X-ray Irradiation

Conclusions and Future Work

- Qualification of CBC3 (TID) for HL-LHC levels completed in first half of 2017
 - confident that current increase measured in accelerated conditions using the CERN X-ray irradiation facility represents a worst-case scenario
 - expected increase on power consumption of a single 2S module due to leakage in CBC3 expected to be < 1%
- Radiation damage model used to perform extrapolation available on gitlab
- Preparing CMS note with details of irradiation
 - (preliminary) draft available soon.

Back-up Slides

CBC3 X-ray Irradiation : Fitting increase in current/CBC3

- Want to achieve the best possible fit for 4 curves with very different amplitudes
 - default function to minimize would be the sum of the Chi2 for the 4 curves

$$g = \sum_i \chi_i^2 \qquad \chi_i^2 = \sum_j \frac{(y_j - f(x_j))^2}{\sigma_j^2}$$

- error (on the measured current) is the same for all 4 data sets, so can see that the value of g would be dominated by the curves with large amplitudes
- expect the minimizing algorithm to be pretty insensitive to what is going on with the curve at the lowest dose rate.
- So instead chose to minimize the sum of the residuals of the individual curves

$$G = \sum_{i} R_i$$
 $R_i = \sum_{j} \frac{|y_j - f(x_j)|}{y_j}$

• effectively a normalization.