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Matter effects at the magic baseline

  

S.K. Agarwalla, S. Choubey and A. Raychaudhuri, hep-ph/0610333
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● Li/B: Higher energies         higher distances are now reachable

● On-peak:

● Off-peak:

● Two setups proposed up to now:
● S. Agarwalla, S. Choubey and A. Raychaudhuri, arXiv: 0804.3007

● He/Ne at 730 Km; 250 < < 650; 50 kton-TASD detector

● Li/B at 7150 Km; = 650; 50 kton-ICAL detector

● P. Coloma, A. Donini, E. Fernández-Martínez and J. López-Pavón, arXiv: 0712.0796

● Li/B at 2000 Km;  = 350; 50 kton-MIND detector

● Li/B at 7000 Km;  = 350; 50 kton-MIND detector
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Improving the -beam 

● He/Ne provides CP sensitivity:
● On-peak;
● 1 Mton WC; 

● Li/B provides sign sensitivity:
● Matter resonance;
● 50 Kton-Iron detector (MIND, ICAL);

● Advantages of increasing  :
● Higher statistics at the detector;
● The number of ions at production stage can be relaxed.
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● Sensitivity does not go down for large 
13

 values;
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 can be determined for any value of  if sin2(2
13

)>6 • 10-4:

● The loss of sensitivity for ||=180º has disappeared;

● The large baseline provides sensitivity to the mass 
hierarchy for sin2(2

13
)>4 • 10-4, only beaten by the NF;

● The setup is statistics-dominated:
● A study on the number of ions that could be actually produced is 

lacking...



  



  

Previous two baseline beams

S. Agarwalla, S. Choubey and A. Raychaudhuri, 

arXiv: 0804.3007

●  (He/Ne)= 575; 

●  (Li/B)= 650;

● 2.5 years/ion;

● 3.0 •1018 useful decays/year;

● At 730 Km: 50 Kton TASD detector

● 10 energy bins with E=0.2 GeV; energy range: [0.5,2.5] GeV; energy 
smearing: 0.03•E1/2; fractional background: 10-3;

● At 7150 Km: 50 Kton ICAL detector

● 18 energy bins with E=1 GeV; energy range: [1.0,19.0] GeV; energy 
smearing: 0.15•E; fractional background: 10-4;

● Overall efficiencies: 80% for both detectors;

● Uncorrelated systematic errors: 2.5% and 5%.



  

Previous two baseline beams

P. Coloma, A. Donini, E. Fernández-Martínez and J. López-Pavón, 

arXiv: 0712.0796

● Li/B; 

●  = 350;

● 5 years/ion;

● 3.0 •1018 useful decays/year;

● L1 = 2000 Km; L2 = 7000 Km;

● Two identical 50 Kton MIND detectors:

● 10 energy bins, with E=1 GeV; lower threshold at 1.5 GeV; fractional 
background: 10-4; energy smearing: 0.15•E;

● Overall efficiency: 65%;

● Uncorrelated systematic errors: 2.5% and 5%.



  

The ionization cooling procedure

7Li + D  → 8Li + p 

C.Rubbia et al. hep-ph/0602032

6Li + 3He  → 8B + n 



  

Number of events at the detector

● Total number of events for both detectors (per year), 
taking 13=5º
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