IDS Accelerator Working Group Summary

J. Scott Berg Brookhaven National Laboratory IDS Plenary Meeting 24 March 2009

- Beginnings of target infrastructure
- Major concern with infrastructure: mercury
 - Volume of mercury: consider shortening dump
 - Containment
 - Mercury splash (ideas for reduction)
- ONeed design and test of CW system
- Understand MERIT jet growth past nozzle

Target Infrastructure

Target Mercury Splash

Target Production

- Re-optimize target geometry for each energy
- Peak around 6–7 GeV, significant reduction outside that
- Results at high energy changed from MARS14 to MARS15

Target Meson Production

Proton Drivers

- Most cases add to existing proposals
- OSPL, Project-X start with long linac
- All rely on some combination of
 - Linac
 - Synchrotron
 - Accumulator
 - Compressor

Proton Drivers Linac Based

\circ SPL-based

Linac, accumulator, compressor Increase rep rate & energy from low-power □ 6 bunch studied: too many □ 3 or 1 bunch possible OProject-X based Studied 3 methods to reach NF parameters □ Favored is linac, 21 GeV synchrotron, compressor

Proton-Driver Ring Based

Green-field proposal

- Short linac (low energy looks easier)
- □ H[−] injection to synchrotron
- Final stage non-scaling nonlinear "pumplet" lattice or synchrotron

ISIS upgrade

Large longitudinal emittance a concern: bunch compression

RF in Magnetic Fields

Achievable gradient reduced in magnetic fields
 Our baseline appears to be beyond limits
 Study with modeling and experiments
 Look at lattices that work with lower magnetic fields at cavities

RF in Magnetic Fields Gradient Plot

RF in Magnetic Fields Experiments

 MuCool/MTA experimental program □ 201.25 and 800 MHz Pressurized gas cavities ○ MICE will have 1.5–2.5 T at 8 MV/m Possible higher gradients with fewer cavities ONew proposals: magnetic insulation Rotatable pillbox • Magnetically insulated lattice cell

RF in Magnetic Fields Rotatable Pillbox

RF in Magnetic Fields Magnetically Insulated Lattice

RF in Magnetic Fields Alternative Lattices

 Modified magnetic lattice Shielded solenoids Alternating solenoid Somewhat reduced performance Capture at higher energy Increased longitudinal phase space area Gas-filled cavities Ionization of gas by beam a concern

RF in Magnetic Fields RF Modeling

Breakdown model proposed

- Current generated from needle-like asperity
 Hits different surface, depositing energy
 Heats surface, leading to fatigue
- There are other models that disagree (?) with this

CERN Front End Plans

- ○5 GeV jet in MARS
- Study 44/88 MHz cooling with Neuffer phase rotation

Ocontribute to

- Baseline optimization
- End-to-end simulation
- As possible considering manpower

Acceleration Linac and RLAs

OMagnet strength variation along linac

- Two halves have different variations
- \Box Improves performance, despite β variation
- Benefits of chromaticity correction
- Discussion of fringe effects, tracking

Acceleration FFAG Injection/Extraction

- Several configurations (triplet, FODO, doublet)
 FODO preferred: injection symmetry
 Short drifts (2 m)
- Need large kicker strengths or many kickers
- OPrefer kickers below 0.1 T
- O 6 kickers, vertical extraction
- Superconducting septum preferred
- Need extra aperture in magnets in inj/ext region

Acceleration FFAG Extraction

Acceleration FFAG Improvements

• Prefer longer drifts, but hurt performance

- Add insertions with long drifts
- Breaks symmetry, can kill performance also
- Correct chromaticity: fix different time of flight for large amplitude

Kills dynamic aperture

Partial chromaticity correction works well
 Some cost in aperture, performance

Acceleration FFAG Chromatic Correction

ATIONAL LABORATOR

Storage Ring

- Beginnings of tracking Very good dynamic aperture (no errors) Chromatic corrections Discussion of flux determination • How much we can shorten storage ring? Depth issue
- OBunch train lengthening: need RF?

Storage Ring

Storage Ring Dynamic Aperture

General Simulation

Collective effects

Beam loading should be included
 HOMs probably not a concern (check)

○ Simulation

Working with different codes
 Some interface and analysis code written

Conclusions

- We are rapidly settling on designs
- The tracking is starting
 - Need to progress to a complete end-to-end simulation
- RF in magnetic fields a significant concern
 Many ideas for dealing with it
 All have a cost
 Make best guess about the limitations

Important Work Items/Questions

- Achieving bunch requirements for proton driver
- Bunch timing tolerated on target
- Mercury jet size evolution
- Limitations of RF in magnetic field
- FFAG design with injection/extraction
- Tracking end-to-end
- Storage ring circumference and depth
 Do we do low energy neutrino factory?

